An integrated evaluation system under randomness and fuzziness was developed in this work to systematically assess the risk of groundwater contamination in a little town, Central China. In this system, randomness of t...An integrated evaluation system under randomness and fuzziness was developed in this work to systematically assess the risk of groundwater contamination in a little town, Central China. In this system, randomness of the parameters and the fuzziness of the risk were considered simultaneously, and the exceeding standard probability of contamination and human health risk due to the contamination were integrated. The contamination risk was defined as a combination of "vulnerability" and "hazard". To calculate the value of "vulnerability", pollutant concentration was simulated by MODFLOW with random input variables and a new modified health risk assessment(MRA) model was established to analyze the level of "hazard". The limit concentration based on environmental-guideline and health risk due to manganese were systematically examined to obtain the general risk levels through a fuzzy rule base. The "vulnerability" and "hazard" were divided into five categories of "high", "medium-high", "medium", "low-medium" and "low", respectively. Then, "vulnerability" and "hazard" were firstly combined by integrated evaluation. Compared with the other two scenarios under deterministic methods, the risk obtained in the proposed system is higher. This research illustrated that ignoring of uncertainties in evaluation process might underestimate the risk level.展开更多
The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attr...The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.展开更多
Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as s...Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.展开更多
This socialized environment among educated and developed people causes themto focusmore on their appearance and health,which turns them towards medical-related treatments,leading us to discuss anti-aging treatment met...This socialized environment among educated and developed people causes themto focusmore on their appearance and health,which turns them towards medical-related treatments,leading us to discuss anti-aging treatment methods for each age group,particularly for urban people who are interested in this.Some anti-aging therapies are used to address the alterations brought on by aging in human life without the need for surgery or negative effects.Five anti-aging therapies such as microdermabrasion or dermabrasion,laser resurfacing anti-aging skin treatments,chemical peels,dermal fillers for aged skin,and botox injections are considered in this study.Based on the criteria of safety risk,investment cost,customer happiness,and side effects,the optimal alternative is picked.As a result,a NormalWiggly Hesitant Pythagorean Fuzzy Set(NWHPFS)is constructed and used in Multi-Criteria Decision-Making(MCDM)using traditional wavy mathematical approaches.The entropy approach is utilized to determine weight values,and the Normal Wiggly Hesitant Pythagorean-VlseKriterijumska Optimizacija I Kompromisno Resenje(NWHPF-VIKOR)method is utilized to rank alternatives using MCDM methodologies.Sensitivity analysis and comparative analysis were performed to ensure the robustness and reliability of the proposed method.The smart final choice will undoubtedly assist Decision Makers(DM)in making the right judgments,and the MCDM approach will undoubtedly assist individuals in understanding the medicine.展开更多
In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuz...In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuzzy logic systems.In this case,we review their most important applications in control and other related topics with type-3 fuzzy systems.Intelligent algorithms have been receiving increasing attention in control and for this reason a review in this area is important.This paper reviews the main applications that make use of Intelligent Computing methods.Specifically,type-3 fuzzy logic systems.The aim of this research is to be able to appreciate,in detail,the applications in control systems and to point out the scientific trends in the use of Intelligent Computing techniques.This is done with the construction and visualization of bibliometric networks,developed with VosViewer Software,which it is a free Java-based program,mainly intended to be used for analyzing and visualizing bibliometric networks.With this tool,we can create maps of publications,authors,or journals based on a co-citation network or construct maps of keywords,countries based on a co-occurrence networks,research groups,etc.展开更多
Food Waste(FW)is a pressing environmental concern that affects every country globally.About one-third of the food that is produced ends up as waste,contributing to the carbon footprint.Hence,the FW must be properly tr...Food Waste(FW)is a pressing environmental concern that affects every country globally.About one-third of the food that is produced ends up as waste,contributing to the carbon footprint.Hence,the FW must be properly treated to reduce environmental pollution.This study evaluates a few available Food Waste Treatment(FWT)technologies,such as anaerobic digestion,composting,landfill,and incineration,which are widely used.A Bipolar Picture Fuzzy Set(BPFS)is proposed to deal with the ambiguity and uncertainty that arise when converting a real-world problem to a mathematical model.A novel Criteria Importance Through Intercriteria Correlation-Stable Preference Ordering Towards Ideal Solution(CRITIC-SPOTIS)approach is developed to objectively analyze FWT selection based on thirteen criteria covering the industry’s technical,environmental,and entrepreneurial aspects.The CRITIC method is used for the objective analysis of the importance of each criterion in FWT selection.The SPOTIS method is adopted to rank the alternative hassle-free,following the criteria.The proposed model offers a rank reversal-free model,i.e.,the rank of the alternatives remains unaffected even after the addition or removal of an alternative.In addition,comparative and sensitivity analyses are performed to ensure the reliability and robustness of the proposed model and to validate the proposed result.展开更多
One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operati...One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operations.As a result,a reliable roof fall prediction model is essential to tackle such challenges.Different parameters that substantially impact roof falls are ill-defined and intangible,making this an uncertain and challenging research issue.The National Institute for Occupational Safety and Health assembled a national database of roof performance from 37 coal mines to explore the factors contributing to roof falls.Data acquired for 37 mines is limited due to several restrictions,which increased the likelihood of incompleteness.Fuzzy logic is a technique for coping with ambiguity,incompleteness,and uncertainty.Therefore,In this paper,the fuzzy inference method is presented,which employs a genetic algorithm to create fuzzy rules based on 109 records of roof fall data and pattern search to refine the membership functions of parameters.The performance of the deployed model is evaluated using statistical measures such as the Root-Mean-Square Error,Mean-Absolute-Error,and coefficient of determination(R_(2)).Based on these criteria,the suggested model outperforms the existing models to precisely predict roof fall rates using fewer fuzzy rules.展开更多
This paper addresses the preassigned-time chaos control problem of memristor chaotic systems with time delays.Since the introduction of memristor,the presented models are nonlinear systems with chaotic dynamics.First,...This paper addresses the preassigned-time chaos control problem of memristor chaotic systems with time delays.Since the introduction of memristor,the presented models are nonlinear systems with chaotic dynamics.First,the TS fuzzy method is adopted to describe the chaotic systems.Then,a sliding-model-based control approach is proposed to achieve the preassigned-time stabilization of the presented models,where the upper bound of stabilization time can be arbitrarily specified in advance.Finally,simulation results demonstrate the validity of presented control approach and theoretic results.展开更多
This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide...This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.展开更多
The optimization of the rule base of a fuzzy logic system (FLS) based on evolutionary algorithm has achievednotable results. However, due to the diversity of the deep structure in the hierarchical fuzzy system (HFS) a...The optimization of the rule base of a fuzzy logic system (FLS) based on evolutionary algorithm has achievednotable results. However, due to the diversity of the deep structure in the hierarchical fuzzy system (HFS) and thecorrelation of each sub fuzzy system, the uncertainty of the HFS’s deep structure increases. For the HFS, a largenumber of studies mainly use fixed structures, which cannot be selected automatically. To solve this problem, thispaper proposes a novel approach for constructing the incremental HFS. During system design, the deep structureand the rule base of the HFS are encoded separately. Subsequently, the deep structure is adaptively mutated basedon the fitness value, so as to realize the diversity of deep structures while ensuring reasonable competition amongthe structures. Finally, the differential evolution (DE) is used to optimize the deep structure of HFS and theparameters of antecedent and consequent simultaneously. The simulation results confirm the effectiveness of themodel. Specifically, the root mean square errors in the Laser dataset and Friedman dataset are 0.0395 and 0.0725,respectively with rule counts of rules is 8 and 12, respectively.When compared to alternative methods, the resultsindicate that the proposed method offers improvements in accuracy and rule counts.展开更多
Rice production is crucial for food security in China,and its relationship with rural labor migration has been studied extensively.Labor migration in rural China has taken new forms in recent years.There has been a di...Rice production is crucial for food security in China,and its relationship with rural labor migration has been studied extensively.Labor migration in rural China has taken new forms in recent years.There has been a discernible trend wherein adult children have started migrating to cities while their elderly parents return to villages to re-engage in on-farm work.The phenomenon has notably shaped the intergenerational division of labor(IDL)within households.However,it remains to be seen how farmers adjust their rice production systems in response to the IDL.The age of 60 years for employment injury insurance is the eligibility threshold for off-farm employment and is used to obtain a source of exogenous variation in the IDL.Based on a representative household survey of 1,752 rice farmers in the Hubei Province of Central China,our fuzzy regression discontinuity analysis reveals that farmers in IDL households are more likely to adopt ratoon rice(RR)than single cropping rice(SR)or double cropping rice(DR).The effect of the IDL varies under different levels of operational scales and specialized agricultural service availability.Further analysis suggests that farmers’arrangements are associated with two potential mechanisms of downward intergenerational transfer.Monetary transfer for urban housing purchases increases RR in IDL households,and time transfer for intergenerational childcare significantly promotes SR in IDL households.This study enhances the understanding of the relationship between rural labor migration and rice production in China,providing a reference for adjusting rice production systems to ensure food security.展开更多
Research on adaptive deformable mirror technology for voice coil actuators(VCAs)is an important trend in the development of large ground-based telescopes.A voice coil adaptive deformable mirror contains a large number...Research on adaptive deformable mirror technology for voice coil actuators(VCAs)is an important trend in the development of large ground-based telescopes.A voice coil adaptive deformable mirror contains a large number of actuators,and there are problems with structural coupling and large temperature increases in their internal coils.Additionally,parameters of the traditional proportional integral derivative(PID)control cannot be adjusted in real-time to adapt to system changes.These problems can be addressed by introducing fuzzy control methods.A table lookup method is adopted to replace real-time calculations of the regular fuzzy controller during the control process,and a prototype platform has been established to verify the effectiveness and robustness of this process.Experimental tests compare the control performance of traditional and fuzzy proportional integral derivative(Fuzzy-PID)controllers,showing that,in system step response tests,the fuzzy control system reduces rise time by 20.25%,decreases overshoot by 78.24%,and shortens settling time by 67.59%.In disturbance rejection experiments,fuzzy control achieves a 46.09%reduction in the maximum deviation,indicating stronger robustness.The Fuzzy-PID controller,based on table lookup,outperforms the standard controller significantly,showing excellent potential for enhancing the dynamic performance and disturbance rejection capability of the voice coil motor actuator system.展开更多
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ...This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.展开更多
A dissertation is a research report or scientific paper written by an author to obtain a certain degree. It reflects postgraduates’ research achievements and the educational quality of an institute, even a country. T...A dissertation is a research report or scientific paper written by an author to obtain a certain degree. It reflects postgraduates’ research achievements and the educational quality of an institute, even a country. To construct an optimized quality evaluation system for postgraduate dissertation (QESPD), we summarized the influencing factors and invited 10 experienced specialists to rate and prioritize them based on fuzzy analytic hierarchy process. Four primary indicators (innovation, integrity, scientificity and normativity) and 16 sub-indicators were selected to form the evaluation system. The order of primary indicators by weight, was innovation (0.4269), scientificity (0.2807), integrity (0.1728) and normativity (0.1196). The top five sub-dimensions were theoretical originality, scientific value, data reliability, design rationality and evidence credibility. To demonstrate the effectiveness of the proposed system, a case study was performed. In the case study, it was demonstrated that the established two-index-hierarchy QESPD in this study was a more scientific and reasonable evaluation system worthy of promotion and application.展开更多
The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator fa...The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator faults makes achieving tracking control within a prescribed-time challenging.To tackle this issue,we propose a novel practical prescribed-time fuzzy tracking control strategy,which is independent of the initial state of the system and does not rely on precise modeling of the system and actuators.We apply the approximation capabilities of fuzzy logic systems to handle the unknown nonlinear functions and unidentified actuator faults in the system.The piecewise controller and adaptive law constructed based on piecewise prescribed time-varying function and backstepping technique method establish the theoretical framework of practical prescribed-time tracking control,and extend the range of prescribed-time tracking control to infinity.Regardless of the initial conditions,the proposed control strategy can guarantee that all signals remain uniformly bounded within the practical prescribed time in the presence of unknown nonlinear item and time-varying actuator faults.Simulation example is presented to demonstrate the effectiveness of the proposed control strategy.展开更多
In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has signifi...In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has significant precision advantages and does not require any adjustment/learning. We put together neuro-fuzzy system (NFS) to connect the set of exemplar input feature vectors (FV) with associated output label (target), both represented by their membership functions (MF). Next unknown FV would be classified by getting upper value of current output MF. After that the fuzzy truths for all MF upper values are maximized and the label of the winner is considered as the class of the input FV. We use the knowledge in the exemplar-label pairs directly with no training. It sets up automatically and then classifies all input FV from the same population as the exemplar FVs. We show that our approach statistically is almost twice as accurate, as well-known genetic-based learning mechanism FRM.展开更多
To enhance the refinement of load decomposition in power systems and fully leverage seasonal change information to further improve prediction performance,this paper proposes a seasonal short-termload combination predi...To enhance the refinement of load decomposition in power systems and fully leverage seasonal change information to further improve prediction performance,this paper proposes a seasonal short-termload combination prediction model based on modal decomposition and a feature-fusion multi-algorithm hybrid neural network model.Specifically,the characteristics of load components are analyzed for different seasons,and the corresponding models are established.First,the improved complete ensemble empirical modal decomposition with adaptive noise(ICEEMDAN)method is employed to decompose the system load for all four seasons,and the new sequence is obtained through reconstruction based on the refined composite multiscale fuzzy entropy of each decomposition component.Second,the correlation between different decomposition components and different features is measured through the max-relevance and min-redundancy method to filter out the subset of features with strong correlation and low redundancy.Finally,different components of the load in different seasons are predicted separately using a bidirectional long-short-term memory network model based on a Bayesian optimization algorithm,with a prediction resolution of 15 min,and the predicted values are accumulated to obtain the final results.According to the experimental findings,the proposed method can successfully balance prediction accuracy and prediction time while offering a higher level of prediction accuracy than the current prediction methods.The results demonstrate that the proposedmethod can effectively address the load power variation induced by seasonal differences in different regions.展开更多
Breast cancer remains a significant global health challenge, necessitating effective early detection and prognosis to enhance patient outcomes. Current diagnostic methods, including mammography and MRI, suffer from li...Breast cancer remains a significant global health challenge, necessitating effective early detection and prognosis to enhance patient outcomes. Current diagnostic methods, including mammography and MRI, suffer from limitations such as uncertainty and imprecise data, leading to late-stage diagnoses. To address this, various expert systems have been developed, but many rely on type-1 fuzzy logic and lack mobile-based applications for data collection and feedback to healthcare practitioners. This research investigates the development of an Enhanced Mobile-based Fuzzy Expert system (EMFES) for breast cancer pre-growth prognosis. The study explores the use of type-2 fuzzy logic to enhance accuracy and model uncertainty effectively. Additionally, it evaluates the advantages of employing the python programming language over java for implementation and considers specific risk factors for data collection. The research aims to dynamically generate fuzzy rules, adapting to evolving breast cancer research and patient data. Key research questions focus on the comparative effectiveness of type-2 fuzzy logic, the handling of uncertainty and imprecise data, the integration of mobile-based features, the choice of programming language, and the creation of dynamic fuzzy rules. Furthermore, the study examines the differences between the Mamdani Inference System and the Sugeno Fuzzy Inference method and explores challenges and opportunities in deploying the EMFES on mobile devices. The research identifies a critical gap in existing breast cancer diagnostic systems, emphasizing the need for a comprehensive, mobile-enabled, and adaptable solution by developing an EMFES that leverages Type-2 fuzzy logic, the Sugeno Inference Algorithm, Python Programming, and dynamic fuzzy rule generation. This study seeks to enhance early breast cancer detection and ultimately reduce breast cancer-related mortality.展开更多
A method with the fuzzy entropy for measuring fuzziness to fuzzy problem in rough sets is proposed. A new sort of the fuzzy entropy is given. The calculating formula and the equivalent expression method with the fuzzy...A method with the fuzzy entropy for measuring fuzziness to fuzzy problem in rough sets is proposed. A new sort of the fuzzy entropy is given. The calculating formula and the equivalent expression method with the fuzzy entropy in rough sets based on equivalence relation are provided, and the properties of the fuzzy entropy are proved. The fuzzy entropy based on equivalent relation is extended to generalize the fuzzy entropy based on general binary relation, and the calculating formula and the equivalent expression of the generalized fuzzy entropy are also given. Finally, an example illustrates the way for getting the fuzzy entropy. Results show that the fuzzy entropy can conveniently measure the fuzziness in rough sets.展开更多
Since the traditional Miner rule ignores the influence of the load sequence on the fatigue life, the fuzzy rules are used to analyze the fuzziness of the fatigue damage caused by the stress nearby the fatigue limit un...Since the traditional Miner rule ignores the influence of the load sequence on the fatigue life, the fuzzy rules are used to analyze the fuzziness of the fatigue damage caused by the stress nearby the fatigue limit under different load sequences. The improved fuzzy Miner rule can reflect the influence of the load sequence on the fatigue life. Results of the example show that the prediction error can be reduced from 61.6% to 21.7%.展开更多
基金Projects(51039001,51009063) supported by the National Natural Science Foundation of ChinaProject(SX2010-026) supported by State Council Three Gorges Project Construction Committee Executive Office,China+1 种基金Project(2012BS046) supported by Henan University of Technology,ChinaProject(BYHGLC-2010-02) supported by the Guangzhou Water Authority,China
文摘An integrated evaluation system under randomness and fuzziness was developed in this work to systematically assess the risk of groundwater contamination in a little town, Central China. In this system, randomness of the parameters and the fuzziness of the risk were considered simultaneously, and the exceeding standard probability of contamination and human health risk due to the contamination were integrated. The contamination risk was defined as a combination of "vulnerability" and "hazard". To calculate the value of "vulnerability", pollutant concentration was simulated by MODFLOW with random input variables and a new modified health risk assessment(MRA) model was established to analyze the level of "hazard". The limit concentration based on environmental-guideline and health risk due to manganese were systematically examined to obtain the general risk levels through a fuzzy rule base. The "vulnerability" and "hazard" were divided into five categories of "high", "medium-high", "medium", "low-medium" and "low", respectively. Then, "vulnerability" and "hazard" were firstly combined by integrated evaluation. Compared with the other two scenarios under deterministic methods, the risk obtained in the proposed system is higher. This research illustrated that ignoring of uncertainties in evaluation process might underestimate the risk level.
基金Anhui Province Natural Science Research Project of Colleges and Universities(2023AH040321)Excellent Scientific Research and Innovation Team of Anhui Colleges(2022AH010098).
文摘The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.
基金The work is partially supported by Natural Science Foundation of Ningxia(Grant No.AAC03300)National Natural Science Foundation of China(Grant No.61962001)Graduate Innovation Project of North Minzu University(Grant No.YCX23152).
文摘Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.
基金funded by the Korean Government(MSIT)Grant NRF-2022R1C1C1006671.
文摘This socialized environment among educated and developed people causes themto focusmore on their appearance and health,which turns them towards medical-related treatments,leading us to discuss anti-aging treatment methods for each age group,particularly for urban people who are interested in this.Some anti-aging therapies are used to address the alterations brought on by aging in human life without the need for surgery or negative effects.Five anti-aging therapies such as microdermabrasion or dermabrasion,laser resurfacing anti-aging skin treatments,chemical peels,dermal fillers for aged skin,and botox injections are considered in this study.Based on the criteria of safety risk,investment cost,customer happiness,and side effects,the optimal alternative is picked.As a result,a NormalWiggly Hesitant Pythagorean Fuzzy Set(NWHPFS)is constructed and used in Multi-Criteria Decision-Making(MCDM)using traditional wavy mathematical approaches.The entropy approach is utilized to determine weight values,and the Normal Wiggly Hesitant Pythagorean-VlseKriterijumska Optimizacija I Kompromisno Resenje(NWHPF-VIKOR)method is utilized to rank alternatives using MCDM methodologies.Sensitivity analysis and comparative analysis were performed to ensure the robustness and reliability of the proposed method.The smart final choice will undoubtedly assist Decision Makers(DM)in making the right judgments,and the MCDM approach will undoubtedly assist individuals in understanding the medicine.
基金CONAHCYTTecnológico Nacional de Mexico/Tijuana Institute of Technology for the support during this research
文摘In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuzzy logic systems.In this case,we review their most important applications in control and other related topics with type-3 fuzzy systems.Intelligent algorithms have been receiving increasing attention in control and for this reason a review in this area is important.This paper reviews the main applications that make use of Intelligent Computing methods.Specifically,type-3 fuzzy logic systems.The aim of this research is to be able to appreciate,in detail,the applications in control systems and to point out the scientific trends in the use of Intelligent Computing techniques.This is done with the construction and visualization of bibliometric networks,developed with VosViewer Software,which it is a free Java-based program,mainly intended to be used for analyzing and visualizing bibliometric networks.With this tool,we can create maps of publications,authors,or journals based on a co-citation network or construct maps of keywords,countries based on a co-occurrence networks,research groups,etc.
文摘Food Waste(FW)is a pressing environmental concern that affects every country globally.About one-third of the food that is produced ends up as waste,contributing to the carbon footprint.Hence,the FW must be properly treated to reduce environmental pollution.This study evaluates a few available Food Waste Treatment(FWT)technologies,such as anaerobic digestion,composting,landfill,and incineration,which are widely used.A Bipolar Picture Fuzzy Set(BPFS)is proposed to deal with the ambiguity and uncertainty that arise when converting a real-world problem to a mathematical model.A novel Criteria Importance Through Intercriteria Correlation-Stable Preference Ordering Towards Ideal Solution(CRITIC-SPOTIS)approach is developed to objectively analyze FWT selection based on thirteen criteria covering the industry’s technical,environmental,and entrepreneurial aspects.The CRITIC method is used for the objective analysis of the importance of each criterion in FWT selection.The SPOTIS method is adopted to rank the alternative hassle-free,following the criteria.The proposed model offers a rank reversal-free model,i.e.,the rank of the alternatives remains unaffected even after the addition or removal of an alternative.In addition,comparative and sensitivity analyses are performed to ensure the reliability and robustness of the proposed model and to validate the proposed result.
文摘One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operations.As a result,a reliable roof fall prediction model is essential to tackle such challenges.Different parameters that substantially impact roof falls are ill-defined and intangible,making this an uncertain and challenging research issue.The National Institute for Occupational Safety and Health assembled a national database of roof performance from 37 coal mines to explore the factors contributing to roof falls.Data acquired for 37 mines is limited due to several restrictions,which increased the likelihood of incompleteness.Fuzzy logic is a technique for coping with ambiguity,incompleteness,and uncertainty.Therefore,In this paper,the fuzzy inference method is presented,which employs a genetic algorithm to create fuzzy rules based on 109 records of roof fall data and pattern search to refine the membership functions of parameters.The performance of the deployed model is evaluated using statistical measures such as the Root-Mean-Square Error,Mean-Absolute-Error,and coefficient of determination(R_(2)).Based on these criteria,the suggested model outperforms the existing models to precisely predict roof fall rates using fewer fuzzy rules.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62473348 and 62076229)the Knowledge Innovation Program of Wuhan-Basic Research(Grant No.2023010201010101).
文摘This paper addresses the preassigned-time chaos control problem of memristor chaotic systems with time delays.Since the introduction of memristor,the presented models are nonlinear systems with chaotic dynamics.First,the TS fuzzy method is adopted to describe the chaotic systems.Then,a sliding-model-based control approach is proposed to achieve the preassigned-time stabilization of the presented models,where the upper bound of stabilization time can be arbitrarily specified in advance.Finally,simulation results demonstrate the validity of presented control approach and theoretic results.
基金supported by the National Natural Science Foundation of China(61973105,62373137)。
文摘This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.
基金the Sichuan Science and Technology Program(2021ZYD0016).
文摘The optimization of the rule base of a fuzzy logic system (FLS) based on evolutionary algorithm has achievednotable results. However, due to the diversity of the deep structure in the hierarchical fuzzy system (HFS) and thecorrelation of each sub fuzzy system, the uncertainty of the HFS’s deep structure increases. For the HFS, a largenumber of studies mainly use fixed structures, which cannot be selected automatically. To solve this problem, thispaper proposes a novel approach for constructing the incremental HFS. During system design, the deep structureand the rule base of the HFS are encoded separately. Subsequently, the deep structure is adaptively mutated basedon the fitness value, so as to realize the diversity of deep structures while ensuring reasonable competition amongthe structures. Finally, the differential evolution (DE) is used to optimize the deep structure of HFS and theparameters of antecedent and consequent simultaneously. The simulation results confirm the effectiveness of themodel. Specifically, the root mean square errors in the Laser dataset and Friedman dataset are 0.0395 and 0.0725,respectively with rule counts of rules is 8 and 12, respectively.When compared to alternative methods, the resultsindicate that the proposed method offers improvements in accuracy and rule counts.
基金supported by the National Natural Science Foundation of China(42207529)the China Postdoctoral Science Foundation(2022M721289).
文摘Rice production is crucial for food security in China,and its relationship with rural labor migration has been studied extensively.Labor migration in rural China has taken new forms in recent years.There has been a discernible trend wherein adult children have started migrating to cities while their elderly parents return to villages to re-engage in on-farm work.The phenomenon has notably shaped the intergenerational division of labor(IDL)within households.However,it remains to be seen how farmers adjust their rice production systems in response to the IDL.The age of 60 years for employment injury insurance is the eligibility threshold for off-farm employment and is used to obtain a source of exogenous variation in the IDL.Based on a representative household survey of 1,752 rice farmers in the Hubei Province of Central China,our fuzzy regression discontinuity analysis reveals that farmers in IDL households are more likely to adopt ratoon rice(RR)than single cropping rice(SR)or double cropping rice(DR).The effect of the IDL varies under different levels of operational scales and specialized agricultural service availability.Further analysis suggests that farmers’arrangements are associated with two potential mechanisms of downward intergenerational transfer.Monetary transfer for urban housing purchases increases RR in IDL households,and time transfer for intergenerational childcare significantly promotes SR in IDL households.This study enhances the understanding of the relationship between rural labor migration and rice production in China,providing a reference for adjusting rice production systems to ensure food security.
基金supported by the National Key R&D Program of China (2022YFA1603001,2021YFC2801402)the National Nature Science Foundation of China (12073053)the Science and Technology Plan of Inner Mongolia (2021GG0245).
文摘Research on adaptive deformable mirror technology for voice coil actuators(VCAs)is an important trend in the development of large ground-based telescopes.A voice coil adaptive deformable mirror contains a large number of actuators,and there are problems with structural coupling and large temperature increases in their internal coils.Additionally,parameters of the traditional proportional integral derivative(PID)control cannot be adjusted in real-time to adapt to system changes.These problems can be addressed by introducing fuzzy control methods.A table lookup method is adopted to replace real-time calculations of the regular fuzzy controller during the control process,and a prototype platform has been established to verify the effectiveness and robustness of this process.Experimental tests compare the control performance of traditional and fuzzy proportional integral derivative(Fuzzy-PID)controllers,showing that,in system step response tests,the fuzzy control system reduces rise time by 20.25%,decreases overshoot by 78.24%,and shortens settling time by 67.59%.In disturbance rejection experiments,fuzzy control achieves a 46.09%reduction in the maximum deviation,indicating stronger robustness.The Fuzzy-PID controller,based on table lookup,outperforms the standard controller significantly,showing excellent potential for enhancing the dynamic performance and disturbance rejection capability of the voice coil motor actuator system.
基金the National Natural Science Foundation of China under Grant U22A2043.
文摘This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.
文摘A dissertation is a research report or scientific paper written by an author to obtain a certain degree. It reflects postgraduates’ research achievements and the educational quality of an institute, even a country. To construct an optimized quality evaluation system for postgraduate dissertation (QESPD), we summarized the influencing factors and invited 10 experienced specialists to rate and prioritize them based on fuzzy analytic hierarchy process. Four primary indicators (innovation, integrity, scientificity and normativity) and 16 sub-indicators were selected to form the evaluation system. The order of primary indicators by weight, was innovation (0.4269), scientificity (0.2807), integrity (0.1728) and normativity (0.1196). The top five sub-dimensions were theoretical originality, scientific value, data reliability, design rationality and evidence credibility. To demonstrate the effectiveness of the proposed system, a case study was performed. In the case study, it was demonstrated that the established two-index-hierarchy QESPD in this study was a more scientific and reasonable evaluation system worthy of promotion and application.
基金partially supported by the National Natural Science Foundation of China(62322307)Sichuan Science and Technology Program,China(2023NSFSC1968).
文摘The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator faults makes achieving tracking control within a prescribed-time challenging.To tackle this issue,we propose a novel practical prescribed-time fuzzy tracking control strategy,which is independent of the initial state of the system and does not rely on precise modeling of the system and actuators.We apply the approximation capabilities of fuzzy logic systems to handle the unknown nonlinear functions and unidentified actuator faults in the system.The piecewise controller and adaptive law constructed based on piecewise prescribed time-varying function and backstepping technique method establish the theoretical framework of practical prescribed-time tracking control,and extend the range of prescribed-time tracking control to infinity.Regardless of the initial conditions,the proposed control strategy can guarantee that all signals remain uniformly bounded within the practical prescribed time in the presence of unknown nonlinear item and time-varying actuator faults.Simulation example is presented to demonstrate the effectiveness of the proposed control strategy.
文摘In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has significant precision advantages and does not require any adjustment/learning. We put together neuro-fuzzy system (NFS) to connect the set of exemplar input feature vectors (FV) with associated output label (target), both represented by their membership functions (MF). Next unknown FV would be classified by getting upper value of current output MF. After that the fuzzy truths for all MF upper values are maximized and the label of the winner is considered as the class of the input FV. We use the knowledge in the exemplar-label pairs directly with no training. It sets up automatically and then classifies all input FV from the same population as the exemplar FVs. We show that our approach statistically is almost twice as accurate, as well-known genetic-based learning mechanism FRM.
文摘To enhance the refinement of load decomposition in power systems and fully leverage seasonal change information to further improve prediction performance,this paper proposes a seasonal short-termload combination prediction model based on modal decomposition and a feature-fusion multi-algorithm hybrid neural network model.Specifically,the characteristics of load components are analyzed for different seasons,and the corresponding models are established.First,the improved complete ensemble empirical modal decomposition with adaptive noise(ICEEMDAN)method is employed to decompose the system load for all four seasons,and the new sequence is obtained through reconstruction based on the refined composite multiscale fuzzy entropy of each decomposition component.Second,the correlation between different decomposition components and different features is measured through the max-relevance and min-redundancy method to filter out the subset of features with strong correlation and low redundancy.Finally,different components of the load in different seasons are predicted separately using a bidirectional long-short-term memory network model based on a Bayesian optimization algorithm,with a prediction resolution of 15 min,and the predicted values are accumulated to obtain the final results.According to the experimental findings,the proposed method can successfully balance prediction accuracy and prediction time while offering a higher level of prediction accuracy than the current prediction methods.The results demonstrate that the proposedmethod can effectively address the load power variation induced by seasonal differences in different regions.
文摘Breast cancer remains a significant global health challenge, necessitating effective early detection and prognosis to enhance patient outcomes. Current diagnostic methods, including mammography and MRI, suffer from limitations such as uncertainty and imprecise data, leading to late-stage diagnoses. To address this, various expert systems have been developed, but many rely on type-1 fuzzy logic and lack mobile-based applications for data collection and feedback to healthcare practitioners. This research investigates the development of an Enhanced Mobile-based Fuzzy Expert system (EMFES) for breast cancer pre-growth prognosis. The study explores the use of type-2 fuzzy logic to enhance accuracy and model uncertainty effectively. Additionally, it evaluates the advantages of employing the python programming language over java for implementation and considers specific risk factors for data collection. The research aims to dynamically generate fuzzy rules, adapting to evolving breast cancer research and patient data. Key research questions focus on the comparative effectiveness of type-2 fuzzy logic, the handling of uncertainty and imprecise data, the integration of mobile-based features, the choice of programming language, and the creation of dynamic fuzzy rules. Furthermore, the study examines the differences between the Mamdani Inference System and the Sugeno Fuzzy Inference method and explores challenges and opportunities in deploying the EMFES on mobile devices. The research identifies a critical gap in existing breast cancer diagnostic systems, emphasizing the need for a comprehensive, mobile-enabled, and adaptable solution by developing an EMFES that leverages Type-2 fuzzy logic, the Sugeno Inference Algorithm, Python Programming, and dynamic fuzzy rule generation. This study seeks to enhance early breast cancer detection and ultimately reduce breast cancer-related mortality.
文摘A method with the fuzzy entropy for measuring fuzziness to fuzzy problem in rough sets is proposed. A new sort of the fuzzy entropy is given. The calculating formula and the equivalent expression method with the fuzzy entropy in rough sets based on equivalence relation are provided, and the properties of the fuzzy entropy are proved. The fuzzy entropy based on equivalent relation is extended to generalize the fuzzy entropy based on general binary relation, and the calculating formula and the equivalent expression of the generalized fuzzy entropy are also given. Finally, an example illustrates the way for getting the fuzzy entropy. Results show that the fuzzy entropy can conveniently measure the fuzziness in rough sets.
基金the National Natural Science Foundation of China(60472118)~~
文摘Since the traditional Miner rule ignores the influence of the load sequence on the fatigue life, the fuzzy rules are used to analyze the fuzziness of the fatigue damage caused by the stress nearby the fatigue limit under different load sequences. The improved fuzzy Miner rule can reflect the influence of the load sequence on the fatigue life. Results of the example show that the prediction error can be reduced from 61.6% to 21.7%.