This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By i...This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.展开更多
Based on the ordering of fuzzy numbers proposed by Goetschel and Voxman,the representations and some properties of strongly preinvex fuzzy-valued function are defined and obtained, several new concepts of strongly mon...Based on the ordering of fuzzy numbers proposed by Goetschel and Voxman,the representations and some properties of strongly preinvex fuzzy-valued function are defined and obtained, several new concepts of strongly monotonicities fuzzy functions are introduced, the relationship among the strongly preinvex, strongly invex and monotonicities under some suitable and appropriate conditions is established and a necessary condition for strongly pseudoinvex functions is given. As an application, the conditions of local optimal solution and global optimal solution in the mathematical programming problem are discussed.展开更多
In this paper, the vector-valued regular functions are extended to the locally convex space. The residues theory of the functions in the locally convex space is achieved. Thereby the Cauchy theory and Cauchy integral ...In this paper, the vector-valued regular functions are extended to the locally convex space. The residues theory of the functions in the locally convex space is achieved. Thereby the Cauchy theory and Cauchy integral formula are extended to the locally convex space.展开更多
In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Su...In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.展开更多
By defining fuzzy valued simple functions and giving L1(μ) approximations of fuzzy valued integrably bounded functions by such simple functions, the paper analyses by L1(μ)-norm the approximation capability of four-...By defining fuzzy valued simple functions and giving L1(μ) approximations of fuzzy valued integrably bounded functions by such simple functions, the paper analyses by L1(μ)-norm the approximation capability of four-layer feedforward regular fuzzy neural networks to the fuzzy valued integrably bounded function F : Rn → FcO(R). That is, if the transfer functionσ: R→R is non-polynomial and integrable function on each finite interval, F may be innorm approximated by fuzzy valued functions defined as to anydegree of accuracy. Finally some real examples demonstrate the conclusions.展开更多
Motivated to obtain the second critical point of a nonlinear differential equation, which is expressed by derivatives of convex functional defined on a Banach space, an estimate with is given to see the relation ...Motivated to obtain the second critical point of a nonlinear differential equation, which is expressed by derivatives of convex functional defined on a Banach space, an estimate with is given to see the relation between f<sup>-1</sup>(0) and g<sup>-1</sup>(0). And both the Fréchet differentiability and the continuity of Fréchet derivative of every convex functional defined on an open subset of a Banach space are shown.展开更多
In 2000, Wu and Gong [1] introduced the thought of the Henstock integrals of inter-valvalued functions and fuzzy-number-valued functions and obtained a number of their properties. The aim of this paper is to introduce...In 2000, Wu and Gong [1] introduced the thought of the Henstock integrals of inter-valvalued functions and fuzzy-number-valued functions and obtained a number of their properties. The aim of this paper is to introduce the thought of the AP- Henstock integrals of interval-valued functions and fuzzy-number-valued functions which are extensions of [1] and investigate a number of their properties.展开更多
In this paper we introduce the notion of the Henstock-Stieltjes (HS) integrals of interval-valued functions and fuzzy-number-valued functions and discuss some of their properties.
We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization p...We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization parameters through the wireless network,large-scale training models can create communication bottlenecks,resulting in slower training times.To address this issue,CHOCO-SGD was proposed,which allows compressing information with arbitrary precision without reducing the convergence rate for strongly convex objective functions.Nevertheless,most convex functions are not strongly convex(such as logistic regression or Lasso),which raises the question of whether this algorithm can be applied to non-strongly convex functions.In this paper,we provide the first theoretical analysis of the convergence rate of CHOCO-SGD on non-strongly convex objectives.We derive a sufficient condition,which limits the fidelity of compression,to guarantee convergence.Moreover,our analysis demonstrates that within the fidelity threshold,this algorithm can significantly reduce transmission burden while maintaining the same convergence rate order as its no-compression equivalent.Numerical experiments further validate the theoretical findings by demonstrating that CHOCO-SGD improves communication efficiency and keeps the same convergence rate order simultaneously.And experiments also show that the algorithm fails to converge with low compression fidelity and in time-varying topologies.Overall,our study offers valuable insights into the potential applicability of CHOCO-SGD for non-strongly convex objectives.Additionally,we provide practical guidelines for researchers seeking to utilize this algorithm in real-world scenarios.展开更多
Let Jn(α,A,B),α≥0,-1≤B<A≤1,n≥1,denote the class of functions f(z)=z+∑k=n+1^∞αkZ^k which are analytic in E={z:|z|<1} and satisfy the conditions f(z)f′(z)/z≠0 and (1-α)zf′(z)/f(z)+α(1+zf″(z)/f′(z))...Let Jn(α,A,B),α≥0,-1≤B<A≤1,n≥1,denote the class of functions f(z)=z+∑k=n+1^∞αkZ^k which are analytic in E={z:|z|<1} and satisfy the conditions f(z)f′(z)/z≠0 and (1-α)zf′(z)/f(z)+α(1+zf″(z)/f′(z))-<1+Az/1+Bz for z∈E.In this paper we obtain incluion relations,distortion properties and estimates of |αn+2-λα^2n+1| for the class Jn(α,A,B),where λ is complex.展开更多
In this article, we prove that the symmetric function Fn(x,r)=∑i1+i2+……in=r(x1(i1x2^i2……xn^in)1/r is Schur harmonic convex for x ∈ R+n and r ∈N -=(1, 2, 3,...} As its applications, some analytic inequa...In this article, we prove that the symmetric function Fn(x,r)=∑i1+i2+……in=r(x1(i1x2^i2……xn^in)1/r is Schur harmonic convex for x ∈ R+n and r ∈N -=(1, 2, 3,...} As its applications, some analytic inequalities are established.展开更多
In this paper, we establish several inequalities for some differantiable mappings that are connected with the Riemann-Liouville fractional integrals. The analysis used in the proofs is fairly elementary.
The aim of this paper is to investigate the differentiability(Gateaux differentiabllity and subdifferentiability) of continuous convex functions on locally convex spaces and to study the behaviour of some important re...The aim of this paper is to investigate the differentiability(Gateaux differentiabllity and subdifferentiability) of continuous convex functions on locally convex spaces and to study the behaviour of some important results for this research area in locally convex spaces.展开更多
Characterizations of differentiability are obtained for continuous convex functions defined on nonempty open convex sets of Banach spaces as a generalization and application of a mumber of mathematicians several years...Characterizations of differentiability are obtained for continuous convex functions defined on nonempty open convex sets of Banach spaces as a generalization and application of a mumber of mathematicians several years effort, and a characteristic theorem is given for Banach spaces which are (weak) Asplund spaces.展开更多
In this paper we derive certain sufficient conditions for starlikeness and convexity of order α of meromorphically multivalent functions in the punctured unit disk.
Denote S to be the class of functions which are analytic,normalized and univalent in the open unit disk U={z:|z|<1}.The important subclasses of S are the class of starlike and convex functions,which we denote by S ...Denote S to be the class of functions which are analytic,normalized and univalent in the open unit disk U={z:|z|<1}.The important subclasses of S are the class of starlike and convex functions,which we denote by S and C.In this paper,we obtain the third Hankel determinant for the inverse of functions f(z)=z+∞Σn=2 anz^n belonging to S^*and C.展开更多
In this paper, the so-called approximate convexity and concavity properties of generalized Groetzsch ring function μa (r) by studying the monotonieity,convexity or concavity of certain composites of μa(r) are ob...In this paper, the so-called approximate convexity and concavity properties of generalized Groetzsch ring function μa (r) by studying the monotonieity,convexity or concavity of certain composites of μa(r) are obtained.展开更多
An analytic function f in the unit disk D := {z ∈ C : |z| 〈 1}, standardly normalized, is called close-to-convex with respect to the Koebe function k(z) := z/(1-z)2, z ∈ D, if there exists δ ∈ (-π/2,...An analytic function f in the unit disk D := {z ∈ C : |z| 〈 1}, standardly normalized, is called close-to-convex with respect to the Koebe function k(z) := z/(1-z)2, z ∈ D, if there exists δ ∈ (-π/2,π/2) such that Re {eiδ(1-z)2f′(z)} 〉 0, z ∈ D. For the class C(k) of all close-to-convex functions with respect to k, related to the class of functions convex in the positive direction of the imaginary axis, the Fekete-Szego problem is studied.展开更多
基金the National Natural Science Foundation of China(62273058,U22A2045)the Key Science and Technology Projects of Jilin Province(20200401075GX)the Youth Science and Technology Innovation and Entrepreneurship Outstanding Talents Project of Jilin Province(20230508043RC)。
文摘This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.
基金Supported by Natural Science Foundation of Gansu Province of China (Grant No.18JR3RM238)Research Foundation of Higher Education of Gansu Province of China (Grant No. 2018A-101)Innovation Ability promotion Project of Higher Education of Gansu Province of China (Grant No. 2019A-117)。
文摘Based on the ordering of fuzzy numbers proposed by Goetschel and Voxman,the representations and some properties of strongly preinvex fuzzy-valued function are defined and obtained, several new concepts of strongly monotonicities fuzzy functions are introduced, the relationship among the strongly preinvex, strongly invex and monotonicities under some suitable and appropriate conditions is established and a necessary condition for strongly pseudoinvex functions is given. As an application, the conditions of local optimal solution and global optimal solution in the mathematical programming problem are discussed.
文摘In this paper, the vector-valued regular functions are extended to the locally convex space. The residues theory of the functions in the locally convex space is achieved. Thereby the Cauchy theory and Cauchy integral formula are extended to the locally convex space.
文摘In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.
基金Supported by the National Natural Science Foundation of China(No:69872039)
文摘By defining fuzzy valued simple functions and giving L1(μ) approximations of fuzzy valued integrably bounded functions by such simple functions, the paper analyses by L1(μ)-norm the approximation capability of four-layer feedforward regular fuzzy neural networks to the fuzzy valued integrably bounded function F : Rn → FcO(R). That is, if the transfer functionσ: R→R is non-polynomial and integrable function on each finite interval, F may be innorm approximated by fuzzy valued functions defined as to anydegree of accuracy. Finally some real examples demonstrate the conclusions.
文摘Motivated to obtain the second critical point of a nonlinear differential equation, which is expressed by derivatives of convex functional defined on a Banach space, an estimate with is given to see the relation between f<sup>-1</sup>(0) and g<sup>-1</sup>(0). And both the Fréchet differentiability and the continuity of Fréchet derivative of every convex functional defined on an open subset of a Banach space are shown.
文摘In 2000, Wu and Gong [1] introduced the thought of the Henstock integrals of inter-valvalued functions and fuzzy-number-valued functions and obtained a number of their properties. The aim of this paper is to introduce the thought of the AP- Henstock integrals of interval-valued functions and fuzzy-number-valued functions which are extensions of [1] and investigate a number of their properties.
文摘In this paper we introduce the notion of the Henstock-Stieltjes (HS) integrals of interval-valued functions and fuzzy-number-valued functions and discuss some of their properties.
基金supported in part by the Shanghai Natural Science Foundation under the Grant 22ZR1407000.
文摘We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization parameters through the wireless network,large-scale training models can create communication bottlenecks,resulting in slower training times.To address this issue,CHOCO-SGD was proposed,which allows compressing information with arbitrary precision without reducing the convergence rate for strongly convex objective functions.Nevertheless,most convex functions are not strongly convex(such as logistic regression or Lasso),which raises the question of whether this algorithm can be applied to non-strongly convex functions.In this paper,we provide the first theoretical analysis of the convergence rate of CHOCO-SGD on non-strongly convex objectives.We derive a sufficient condition,which limits the fidelity of compression,to guarantee convergence.Moreover,our analysis demonstrates that within the fidelity threshold,this algorithm can significantly reduce transmission burden while maintaining the same convergence rate order as its no-compression equivalent.Numerical experiments further validate the theoretical findings by demonstrating that CHOCO-SGD improves communication efficiency and keeps the same convergence rate order simultaneously.And experiments also show that the algorithm fails to converge with low compression fidelity and in time-varying topologies.Overall,our study offers valuable insights into the potential applicability of CHOCO-SGD for non-strongly convex objectives.Additionally,we provide practical guidelines for researchers seeking to utilize this algorithm in real-world scenarios.
文摘Let Jn(α,A,B),α≥0,-1≤B<A≤1,n≥1,denote the class of functions f(z)=z+∑k=n+1^∞αkZ^k which are analytic in E={z:|z|<1} and satisfy the conditions f(z)f′(z)/z≠0 and (1-α)zf′(z)/f(z)+α(1+zf″(z)/f′(z))-<1+Az/1+Bz for z∈E.In this paper we obtain incluion relations,distortion properties and estimates of |αn+2-λα^2n+1| for the class Jn(α,A,B),where λ is complex.
基金supported by NSFC (60850005)NSF of Zhejiang Province(D7080080, Y7080185, Y607128)
文摘In this article, we prove that the symmetric function Fn(x,r)=∑i1+i2+……in=r(x1(i1x2^i2……xn^in)1/r is Schur harmonic convex for x ∈ R+n and r ∈N -=(1, 2, 3,...} As its applications, some analytic inequalities are established.
文摘In this paper, we establish several inequalities for some differantiable mappings that are connected with the Riemann-Liouville fractional integrals. The analysis used in the proofs is fairly elementary.
文摘The aim of this paper is to investigate the differentiability(Gateaux differentiabllity and subdifferentiability) of continuous convex functions on locally convex spaces and to study the behaviour of some important results for this research area in locally convex spaces.
文摘Characterizations of differentiability are obtained for continuous convex functions defined on nonempty open convex sets of Banach spaces as a generalization and application of a mumber of mathematicians several years effort, and a characteristic theorem is given for Banach spaces which are (weak) Asplund spaces.
文摘In this paper we derive certain sufficient conditions for starlikeness and convexity of order α of meromorphically multivalent functions in the punctured unit disk.
基金The NSF(11561001)of Chinathe NSF(2014MS0101)of Inner Mongolia Province+1 种基金the Higher School Foundation(NJZY19211)of Inner Mongolia of Chinathe NSF(KJ2018A0839,KJ2018A0833)of Anhui Provincial Department of Education
文摘Denote S to be the class of functions which are analytic,normalized and univalent in the open unit disk U={z:|z|<1}.The important subclasses of S are the class of starlike and convex functions,which we denote by S and C.In this paper,we obtain the third Hankel determinant for the inverse of functions f(z)=z+∞Σn=2 anz^n belonging to S^*and C.
文摘In this paper, the so-called approximate convexity and concavity properties of generalized Groetzsch ring function μa (r) by studying the monotonieity,convexity or concavity of certain composites of μa(r) are obtained.
文摘An analytic function f in the unit disk D := {z ∈ C : |z| 〈 1}, standardly normalized, is called close-to-convex with respect to the Koebe function k(z) := z/(1-z)2, z ∈ D, if there exists δ ∈ (-π/2,π/2) such that Re {eiδ(1-z)2f′(z)} 〉 0, z ∈ D. For the class C(k) of all close-to-convex functions with respect to k, related to the class of functions convex in the positive direction of the imaginary axis, the Fekete-Szego problem is studied.