The global stability problem of Takagi-Sugeno(T-S) fuzzy Hopfield neural networks(FHNNs) with time delays is investigated.Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guar...The global stability problem of Takagi-Sugeno(T-S) fuzzy Hopfield neural networks(FHNNs) with time delays is investigated.Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guarantee the asymptotic stability of the FHNNs with less conservatism.Firstly,using both Finsler's lemma and an improved homogeneous matrix polynomial technique,and applying an affine parameter-dependent Lyapunov-Krasovskii functional,we obtain the convergent LMI-based stability criteria.Algebraic properties of the fuzzy membership functions in the unit simplex are considered in the process of stability analysis via the homogeneous matrix polynomials technique.Secondly,to further reduce the conservatism,a new right-hand-side slack variables introducing technique is also proposed in terms of LMIs,which is suitable to the homogeneous matrix polynomials setting.Finally,two illustrative examples are given to show the efficiency of the proposed approaches.展开更多
Brain-like computer research and development have been growing rapidly in recent years. It is necessary to design large scale dynamical neural networks (more than 106 neurons) to simulate complex process of our brain....Brain-like computer research and development have been growing rapidly in recent years. It is necessary to design large scale dynamical neural networks (more than 106 neurons) to simulate complex process of our brain. But such kind of task is not easy to achieve only based on the analysis of partial differential equations, especially for those complex neural models, e.g. Rose-Hindmarsh (RH) model. So in this paper, we develop a novel approach by combining fuzzy logical designing with Proximal Support Vector Machine Classifiers (PSVM) learning in the designing of large scale neural networks. Particularly, our approach can effectively simplify the designing process, which is crucial for both cognition science and neural science. At last, we conduct our approach on an artificial neural system with more than 108 neurons for haze-free task, and the experimental results show that texture features extracted by fuzzy logic can effectively increase the texture information entropy and improve the effect of haze-removing in some degree.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 60974004)the Natural Science Foundation of Jilin Province,China (Grant No. 201115222)
文摘The global stability problem of Takagi-Sugeno(T-S) fuzzy Hopfield neural networks(FHNNs) with time delays is investigated.Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guarantee the asymptotic stability of the FHNNs with less conservatism.Firstly,using both Finsler's lemma and an improved homogeneous matrix polynomial technique,and applying an affine parameter-dependent Lyapunov-Krasovskii functional,we obtain the convergent LMI-based stability criteria.Algebraic properties of the fuzzy membership functions in the unit simplex are considered in the process of stability analysis via the homogeneous matrix polynomials technique.Secondly,to further reduce the conservatism,a new right-hand-side slack variables introducing technique is also proposed in terms of LMIs,which is suitable to the homogeneous matrix polynomials setting.Finally,two illustrative examples are given to show the efficiency of the proposed approaches.
文摘Brain-like computer research and development have been growing rapidly in recent years. It is necessary to design large scale dynamical neural networks (more than 106 neurons) to simulate complex process of our brain. But such kind of task is not easy to achieve only based on the analysis of partial differential equations, especially for those complex neural models, e.g. Rose-Hindmarsh (RH) model. So in this paper, we develop a novel approach by combining fuzzy logical designing with Proximal Support Vector Machine Classifiers (PSVM) learning in the designing of large scale neural networks. Particularly, our approach can effectively simplify the designing process, which is crucial for both cognition science and neural science. At last, we conduct our approach on an artificial neural system with more than 108 neurons for haze-free task, and the experimental results show that texture features extracted by fuzzy logic can effectively increase the texture information entropy and improve the effect of haze-removing in some degree.