We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-d...We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.展开更多
Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The ...Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov-Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method.展开更多
In this paper, the dynamic behaviors of fuzzy cellular neural networks (FCNNs) with time-varying coefficients and delays are considered. Some criteria are established to ensure the exponential convergence or exponen...In this paper, the dynamic behaviors of fuzzy cellular neural networks (FCNNs) with time-varying coefficients and delays are considered. Some criteria are established to ensure the exponential convergence or exponential stability of such neural networks. The effectiveness of obtained results is illustrated by a numerical example.展开更多
In this paper, a class of fuzzy cellular neural networks with distributed delays is discussed. By employing fixed point theorem and inequality techniques, some sufficient conditions are obtained to ensure the existenc...In this paper, a class of fuzzy cellular neural networks with distributed delays is discussed. By employing fixed point theorem and inequality techniques, some sufficient conditions are obtained to ensure the existence and global exponential stability of periodic solutions to the systems. Without assuming the global Lipschitz conditions of activation functions, our results are novel and reduce the limitation of previous known results. Moreover, an example is given to illustrate the effectiveness of our results.展开更多
In this paper, the global exponential stability of fuzzy cellular neural networks with impulses and infinite delays is investigated. Based on an impulsive delayed integro-differential inequality and the properties of ...In this paper, the global exponential stability of fuzzy cellular neural networks with impulses and infinite delays is investigated. Based on an impulsive delayed integro-differential inequality and the properties of fuzzy logic operation and M-matrix, an easily verified sufficient condition is obtained. Moreover, the exponential convergent rate for the fuzzy cellular neural networks with impulses and infinite delays is also given. An example is given to illustrate the effectiveness of our theoretical result.展开更多
基金the Ministry of Science and Technology of India(Grant No.DST/Inspire Fellowship/2010/[293]/dt.18/03/2011)
文摘We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.
基金supported by No. DST/INSPIRE Fellowship/2010/[293]/dt. 18/03/2011
文摘Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov-Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (No. 50578064)the Foundation of Science and Technology of Guangdong Province in China (No. 2009B011400046)
文摘In this paper, the dynamic behaviors of fuzzy cellular neural networks (FCNNs) with time-varying coefficients and delays are considered. Some criteria are established to ensure the exponential convergence or exponential stability of such neural networks. The effectiveness of obtained results is illustrated by a numerical example.
基金the National Natural Science Foundation of China underGrant No.60574043the National Science Foundation of Hunan Provincial Education Departmentunder Grant No.06C792 and No.07C700the construct program of the key discipline in HunanProvince.
文摘In this paper, a class of fuzzy cellular neural networks with distributed delays is discussed. By employing fixed point theorem and inequality techniques, some sufficient conditions are obtained to ensure the existence and global exponential stability of periodic solutions to the systems. Without assuming the global Lipschitz conditions of activation functions, our results are novel and reduce the limitation of previous known results. Moreover, an example is given to illustrate the effectiveness of our results.
基金The authors are grateful to the referees for their helpful suggestions. the National Natural Science Foundation of China (No. 10671133) the Doctors' Foundation of Chongqing University of Posts and Telecommunication (No. A2007-41).
文摘In this paper, the global exponential stability of fuzzy cellular neural networks with impulses and infinite delays is investigated. Based on an impulsive delayed integro-differential inequality and the properties of fuzzy logic operation and M-matrix, an easily verified sufficient condition is obtained. Moreover, the exponential convergent rate for the fuzzy cellular neural networks with impulses and infinite delays is also given. An example is given to illustrate the effectiveness of our theoretical result.