An estimation method for aircraft similarity based on fuzzy theory and grey incidence analysis is presented. This estimation method is made up of the triangular fuzzy transforming model of linguistic variables and the...An estimation method for aircraft similarity based on fuzzy theory and grey incidence analysis is presented. This estimation method is made up of the triangular fuzzy transforming model of linguistic variables and the method of grey incidence analysis. Nine feature attributes of aircraft are selected to estimate the similarity between the new aircraft and the existing aircraft. A new aircraft X and other six existing aircrafts are taken as examples. Analyses show that similarity estimation results obtained from the method are in accordance with practice.展开更多
Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of sampl...Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of samples. As a result, the extracted features cannot provide enough useful information for distinguishing pat- tern from one another, and further resulting in degradation of classification performance. To fullly use class in- formation of samples, a novel method, called the fuzzy within-class MatPCA (F-WMatPCA)is proposed. F-WMatPCA utilizes the fuzzy K-nearest neighbor method(FKNN) to fuzzify the class membership degrees of a training sample and then performs fuzzy MatPCA within these patterns having the same class label. Due to more class information is used in feature extraction, F-WMatPCA can intuitively improve the classification perfor- mance. Experimental results in face databases and some benchmark datasets show that F-WMatPCA is effective and competitive than MatPCA. The experimental analysis on face image databases indicates that F-WMatPCA im- proves the recognition accuracy and is more stable and robust in performing classification than the existing method of fuzzy-based F-Fisherfaces.展开更多
This paper presents a fuzzy logic approach to efficiently perform unsupervised character classification for improvement in robustness, correctness and speed of a character recognition system. The characters are first ...This paper presents a fuzzy logic approach to efficiently perform unsupervised character classification for improvement in robustness, correctness and speed of a character recognition system. The characters are first split into eight typographical categories. The classification scheme uses pattern matching to classify the characters in each category into a set of fuzzy prototypes based on a nonlinear weighted similarity function. The fuzzy unsupervised character classification, which is natural in the repre...展开更多
Classification is one of the data mining processes used to predict predetermined target classes with data learning accurately.This study discusses data classification using a fuzzy soft set method to predict target cl...Classification is one of the data mining processes used to predict predetermined target classes with data learning accurately.This study discusses data classification using a fuzzy soft set method to predict target classes accurately.This study aims to form a data classification algorithm using the fuzzy soft set method.In this study,the fuzzy soft set was calculated based on the normalized Hamming distance.Each parameter in this method is mapped to a power set from a subset of the fuzzy set using a fuzzy approximation function.In the classification step,a generalized normalized Euclidean distance is used to determine the similarity between two sets of fuzzy soft sets.The experiments used the University of California(UCI)Machine Learning dataset to assess the accuracy of the proposed data classification method.The dataset samples were divided into training(75%of samples)and test(25%of samples)sets.Experiments were performed in MATLAB R2010a software.The experiments showed that:(1)The fastest sequence is matching function,distance measure,similarity,normalized Euclidean distance,(2)the proposed approach can improve accuracy and recall by up to 10.3436%and 6.9723%,respectively,compared with baseline techniques.Hence,the fuzzy soft set method is appropriate for classifying data.展开更多
In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tig...In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method.展开更多
An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local ...An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local model. Thus, the stability analysis method of the homogeneous fuzzy system can be used for reference. Stability conditions are derived in terms of linear matrix inequalities based on the fuzzy Lyapunov functions and the modified common Lyapunov functions, respectively. The results demonstrate that the stability result based on the fuzzy Lyapunov functions is less conservative than that based on the modified common Lyapunov functions via numerical examples. Compared with the method which does not expand the consequent part, the proposed method is simpler but its feasible region is reduced. Finally, in order to expand the application of the fuzzy Lyapunov functions, the piecewise fuzzy Lyapunov function is proposed, which can be used to analyze the stability for triangular or trapezoidal membership functions and obtain the stability conditions. A numerical example validates the effectiveness of the proposed approach.展开更多
A new method for Web users fuzzy clustering based on analysis of user interest characteristic is proposed in this article. The method first defines page fuzzy categories according to the links on the index page of the...A new method for Web users fuzzy clustering based on analysis of user interest characteristic is proposed in this article. The method first defines page fuzzy categories according to the links on the index page of the site, then computes fuzzy degree of cross page through aggregating on data of Web log. After that, by using fuzzy comprehensive evaluation method, the method constructs user interest vectors according to page viewing times and frequency of hits, and derives the fuzzy similarity matrix from the interest vectors for the Web users. Finally, it gets the clustering result through the fuzzy clustering method. The experimental results show the effectiveness of the method. Key words Web log mining - fuzzy similarity matrix - fuzzy comprehensive evaluation - fuzzy clustering CLC number TP18 - TP311 - TP391 Foundation item: Supported by the Natural Science Foundation of Heilongjiang Province of China (F0304)Biography: ZHAN Li-qiang (1966-), male, Lecturer, Ph. D. research direction: the theory methods of data mining and theory of database.展开更多
Tool wear state classification has good potential to play a critical role in ensuring the dimensional accuracy of the work piece and prevention of damage to cutting tool in machining process. During machining process,...Tool wear state classification has good potential to play a critical role in ensuring the dimensional accuracy of the work piece and prevention of damage to cutting tool in machining process. During machining process, tool wear is an important factor which contributes to the variation of spindle motor current, speed, feed and depth of cut. In the present work, online tool wear state detecting method with spindle motor current in turning operation for Al/SiC composite material is presented. By analyzing the effects of tool wear as well as the cutting parameters on the current signal, the models on the relationship between the current signals and the cutting parameters are established with partial design taken from experimental data and regression analysis. The fuzzy classification method is used to classify the tool wear states so as to facilitate defective tool replacement at the proper time.展开更多
The issue of the stability and controller design of Takagi-Sugeno(T-S) fuzzy control systems with time-delay is investigated under imperfect premise matching when the T-S fuzzy time-delay model and fuzzy controller ...The issue of the stability and controller design of Takagi-Sugeno(T-S) fuzzy control systems with time-delay is investigated under imperfect premise matching when the T-S fuzzy time-delay model and fuzzy controller do not share the same membership functions.A new stability criterion which contains the information of membership functions is derived.The new stability criterion is less conservative,and enhances the design flexibility.Two numerical examples are presented to illustrate the conservativeness and effectiveness of the proposed method.展开更多
The classification of the springtime water mass has an important influence on the hydrography,regional climate change and fishery in the Taiwan Strait.Based on 58 stations of CTD profiling data collected in the wester...The classification of the springtime water mass has an important influence on the hydrography,regional climate change and fishery in the Taiwan Strait.Based on 58 stations of CTD profiling data collected in the western and southwestern Taiwan Strait during the spring cruise of 2019,we analyze the spatial distributions of temperature(T)and salinity(S)in the investigation area.Then by using the fuzzy cluster method combined with the T-S similarity number,we classify the investigation area into 5 water masses:the Minzhe Coastal Water(MZCW),the Taiwan Strait Mixed Water(TSMW),the South China Sea Surface Water(SCSSW),the South China Sea Subsurface Water(SCSUW)and the Kuroshio Branch Water(KBW).The MZCW appears in the near surface layer along the western coast of Taiwan Strait,showing low-salinity(<32.0)tongues near the Minjiang River Estuary and the Xiamen Bay mouth.The TSMW covers most upper layer of the investigation area.The SCSSW is mainly distributed in the upper layer of the southwestern Taiwan Strait,beneath which is the SCSUW.The KBW is a high temperature(core value of 26.36℃)and high salinity(core value of 34.62)water mass located southeast of the Taiwan Bank and partially in the central Taiwan Strait.展开更多
In the paper, a class of fuzzy matrix equations AX=B where A is an m × n crisp matrix and is an m × p arbitrary LR fuzzy numbers matrix, is investigated. We convert the fuzzy matrix equation into two crisp m...In the paper, a class of fuzzy matrix equations AX=B where A is an m × n crisp matrix and is an m × p arbitrary LR fuzzy numbers matrix, is investigated. We convert the fuzzy matrix equation into two crisp matrix equations. Then the fuzzy approximate solution of the fuzzy matrix equation is obtained by solving two crisp matrix equations. The existence condition of the strong LR fuzzy solution to the fuzzy matrix equation is also discussed. Some examples are given to illustrate the proposed method. Our results enrich the fuzzy linear systems theory.展开更多
Classification of the patterns is a crucial structure of research and applications. Using fuzzy set theory, classifying the patterns has become of great interest because of its ability to understand the parameters. ...Classification of the patterns is a crucial structure of research and applications. Using fuzzy set theory, classifying the patterns has become of great interest because of its ability to understand the parameters. One of the problemsobserved in the fuzzification of an unknown pattern is that importance is givenonly to the known patterns but not to their features. In contrast, features of thepatterns play an essential role when their respective patterns overlap. In this paper,an optimal fuzzy nearest neighbor model has been introduced in which a fuzzifi-cation process has been carried out for the unknown pattern using k nearest neighbor. With the help of the fuzzification process, the membership matrix has beenformed. In this membership matrix, fuzzification has been carried out of the features of the unknown pattern. Classification results are verified on a completelyllabelled Telugu vowel data set, and the accuracy is compared with the differentmodels and the fuzzy k nearest neighbor algorithm. The proposed model gives84.86% accuracy on 50% training data set and 89.35% accuracy on 80% trainingdata set. The proposed classifier learns well enough with a small amount of training data, resulting in an efficient and faster approach.展开更多
As far as the problem of intuitionistic fuzzy cluster analysis is concerned, this paper proposes a new formula of similarity degree with attribute weight of each index. We conduct a fuzzy cluster analysis based on the...As far as the problem of intuitionistic fuzzy cluster analysis is concerned, this paper proposes a new formula of similarity degree with attribute weight of each index. We conduct a fuzzy cluster analysis based on the new intuitionistic fuzzy similarity matrix, which is constructed via this new weighted similarity degree method and can be transformed into a fuzzy similarity matrix. Moreover, an example is given to demonstrate the feasibility and validity of this method.展开更多
A fuzzy clustering analysis model based on the quotient space is proposed. Firstly, the conversion from coarse to fine granularity and the hierarchical structure are used to reduce the multidimensional samples. Second...A fuzzy clustering analysis model based on the quotient space is proposed. Firstly, the conversion from coarse to fine granularity and the hierarchical structure are used to reduce the multidimensional samples. Secondly, the fuzzy compatibility relation matrix of the model is converted into fuzzy equivalence relation matrix. Finally, the diagram of clustering genealogy is generated according to the fuzzy equivalence relation matrix, which enables the dynamic selection of different thresholds to effectively solve the problem of cluster analysis of the samples with multi-dimensional attributes.展开更多
文摘An estimation method for aircraft similarity based on fuzzy theory and grey incidence analysis is presented. This estimation method is made up of the triangular fuzzy transforming model of linguistic variables and the method of grey incidence analysis. Nine feature attributes of aircraft are selected to estimate the similarity between the new aircraft and the existing aircraft. A new aircraft X and other six existing aircrafts are taken as examples. Analyses show that similarity estimation results obtained from the method are in accordance with practice.
文摘Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of samples. As a result, the extracted features cannot provide enough useful information for distinguishing pat- tern from one another, and further resulting in degradation of classification performance. To fullly use class in- formation of samples, a novel method, called the fuzzy within-class MatPCA (F-WMatPCA)is proposed. F-WMatPCA utilizes the fuzzy K-nearest neighbor method(FKNN) to fuzzify the class membership degrees of a training sample and then performs fuzzy MatPCA within these patterns having the same class label. Due to more class information is used in feature extraction, F-WMatPCA can intuitively improve the classification perfor- mance. Experimental results in face databases and some benchmark datasets show that F-WMatPCA is effective and competitive than MatPCA. The experimental analysis on face image databases indicates that F-WMatPCA im- proves the recognition accuracy and is more stable and robust in performing classification than the existing method of fuzzy-based F-Fisherfaces.
文摘This paper presents a fuzzy logic approach to efficiently perform unsupervised character classification for improvement in robustness, correctness and speed of a character recognition system. The characters are first split into eight typographical categories. The classification scheme uses pattern matching to classify the characters in each category into a set of fuzzy prototypes based on a nonlinear weighted similarity function. The fuzzy unsupervised character classification, which is natural in the repre...
文摘Classification is one of the data mining processes used to predict predetermined target classes with data learning accurately.This study discusses data classification using a fuzzy soft set method to predict target classes accurately.This study aims to form a data classification algorithm using the fuzzy soft set method.In this study,the fuzzy soft set was calculated based on the normalized Hamming distance.Each parameter in this method is mapped to a power set from a subset of the fuzzy set using a fuzzy approximation function.In the classification step,a generalized normalized Euclidean distance is used to determine the similarity between two sets of fuzzy soft sets.The experiments used the University of California(UCI)Machine Learning dataset to assess the accuracy of the proposed data classification method.The dataset samples were divided into training(75%of samples)and test(25%of samples)sets.Experiments were performed in MATLAB R2010a software.The experiments showed that:(1)The fastest sequence is matching function,distance measure,similarity,normalized Euclidean distance,(2)the proposed approach can improve accuracy and recall by up to 10.3436%and 6.9723%,respectively,compared with baseline techniques.Hence,the fuzzy soft set method is appropriate for classifying data.
基金funded by the National Natural Science Foundation of China(42174131)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-03).
文摘In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method.
基金Specialized Research Fund for the Doctoral Program of Higher Education ( No. 20090092110051)the Key Project of Chinese Ministry of Education ( No. 108060)the National Natural Science Foundation of China ( No. 51076027, 51036002, 51106024)
文摘An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local model. Thus, the stability analysis method of the homogeneous fuzzy system can be used for reference. Stability conditions are derived in terms of linear matrix inequalities based on the fuzzy Lyapunov functions and the modified common Lyapunov functions, respectively. The results demonstrate that the stability result based on the fuzzy Lyapunov functions is less conservative than that based on the modified common Lyapunov functions via numerical examples. Compared with the method which does not expand the consequent part, the proposed method is simpler but its feasible region is reduced. Finally, in order to expand the application of the fuzzy Lyapunov functions, the piecewise fuzzy Lyapunov function is proposed, which can be used to analyze the stability for triangular or trapezoidal membership functions and obtain the stability conditions. A numerical example validates the effectiveness of the proposed approach.
文摘A new method for Web users fuzzy clustering based on analysis of user interest characteristic is proposed in this article. The method first defines page fuzzy categories according to the links on the index page of the site, then computes fuzzy degree of cross page through aggregating on data of Web log. After that, by using fuzzy comprehensive evaluation method, the method constructs user interest vectors according to page viewing times and frequency of hits, and derives the fuzzy similarity matrix from the interest vectors for the Web users. Finally, it gets the clustering result through the fuzzy clustering method. The experimental results show the effectiveness of the method. Key words Web log mining - fuzzy similarity matrix - fuzzy comprehensive evaluation - fuzzy clustering CLC number TP18 - TP311 - TP391 Foundation item: Supported by the Natural Science Foundation of Heilongjiang Province of China (F0304)Biography: ZHAN Li-qiang (1966-), male, Lecturer, Ph. D. research direction: the theory methods of data mining and theory of database.
文摘Tool wear state classification has good potential to play a critical role in ensuring the dimensional accuracy of the work piece and prevention of damage to cutting tool in machining process. During machining process, tool wear is an important factor which contributes to the variation of spindle motor current, speed, feed and depth of cut. In the present work, online tool wear state detecting method with spindle motor current in turning operation for Al/SiC composite material is presented. By analyzing the effects of tool wear as well as the cutting parameters on the current signal, the models on the relationship between the current signals and the cutting parameters are established with partial design taken from experimental data and regression analysis. The fuzzy classification method is used to classify the tool wear states so as to facilitate defective tool replacement at the proper time.
基金Supported by the National Natural Science Foundation of China(60874084)the Academy of Finland(135225,127299)
文摘The issue of the stability and controller design of Takagi-Sugeno(T-S) fuzzy control systems with time-delay is investigated under imperfect premise matching when the T-S fuzzy time-delay model and fuzzy controller do not share the same membership functions.A new stability criterion which contains the information of membership functions is derived.The new stability criterion is less conservative,and enhances the design flexibility.Two numerical examples are presented to illustrate the conservativeness and effectiveness of the proposed method.
基金The National Natural Science Foundation of China under contract Nos 42106005,91958203,41676131,41876155.
文摘The classification of the springtime water mass has an important influence on the hydrography,regional climate change and fishery in the Taiwan Strait.Based on 58 stations of CTD profiling data collected in the western and southwestern Taiwan Strait during the spring cruise of 2019,we analyze the spatial distributions of temperature(T)and salinity(S)in the investigation area.Then by using the fuzzy cluster method combined with the T-S similarity number,we classify the investigation area into 5 water masses:the Minzhe Coastal Water(MZCW),the Taiwan Strait Mixed Water(TSMW),the South China Sea Surface Water(SCSSW),the South China Sea Subsurface Water(SCSUW)and the Kuroshio Branch Water(KBW).The MZCW appears in the near surface layer along the western coast of Taiwan Strait,showing low-salinity(<32.0)tongues near the Minjiang River Estuary and the Xiamen Bay mouth.The TSMW covers most upper layer of the investigation area.The SCSSW is mainly distributed in the upper layer of the southwestern Taiwan Strait,beneath which is the SCSUW.The KBW is a high temperature(core value of 26.36℃)and high salinity(core value of 34.62)water mass located southeast of the Taiwan Bank and partially in the central Taiwan Strait.
文摘In the paper, a class of fuzzy matrix equations AX=B where A is an m × n crisp matrix and is an m × p arbitrary LR fuzzy numbers matrix, is investigated. We convert the fuzzy matrix equation into two crisp matrix equations. Then the fuzzy approximate solution of the fuzzy matrix equation is obtained by solving two crisp matrix equations. The existence condition of the strong LR fuzzy solution to the fuzzy matrix equation is also discussed. Some examples are given to illustrate the proposed method. Our results enrich the fuzzy linear systems theory.
基金supported by the Taif University Researchers Supporting Project Number(TURSP-2020/79),Taif University,Taif,Saudi Arabia.
文摘Classification of the patterns is a crucial structure of research and applications. Using fuzzy set theory, classifying the patterns has become of great interest because of its ability to understand the parameters. One of the problemsobserved in the fuzzification of an unknown pattern is that importance is givenonly to the known patterns but not to their features. In contrast, features of thepatterns play an essential role when their respective patterns overlap. In this paper,an optimal fuzzy nearest neighbor model has been introduced in which a fuzzifi-cation process has been carried out for the unknown pattern using k nearest neighbor. With the help of the fuzzification process, the membership matrix has beenformed. In this membership matrix, fuzzification has been carried out of the features of the unknown pattern. Classification results are verified on a completelyllabelled Telugu vowel data set, and the accuracy is compared with the differentmodels and the fuzzy k nearest neighbor algorithm. The proposed model gives84.86% accuracy on 50% training data set and 89.35% accuracy on 80% trainingdata set. The proposed classifier learns well enough with a small amount of training data, resulting in an efficient and faster approach.
文摘As far as the problem of intuitionistic fuzzy cluster analysis is concerned, this paper proposes a new formula of similarity degree with attribute weight of each index. We conduct a fuzzy cluster analysis based on the new intuitionistic fuzzy similarity matrix, which is constructed via this new weighted similarity degree method and can be transformed into a fuzzy similarity matrix. Moreover, an example is given to demonstrate the feasibility and validity of this method.
文摘A fuzzy clustering analysis model based on the quotient space is proposed. Firstly, the conversion from coarse to fine granularity and the hierarchical structure are used to reduce the multidimensional samples. Secondly, the fuzzy compatibility relation matrix of the model is converted into fuzzy equivalence relation matrix. Finally, the diagram of clustering genealogy is generated according to the fuzzy equivalence relation matrix, which enables the dynamic selection of different thresholds to effectively solve the problem of cluster analysis of the samples with multi-dimensional attributes.