This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different he...This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance.展开更多
A high-performance digital servo system built on the platform of a field programmable gate array (FPGA),a fully digitized hardware design scheme of a direct torque control (DTC) and a low speed permanent magnet synchr...A high-performance digital servo system built on the platform of a field programmable gate array (FPGA),a fully digitized hardware design scheme of a direct torque control (DTC) and a low speed permanent magnet synchronous motor (PMSM) is proposed. The DTC strategy of PMSM is described with Verilog hardware description language and is employed on-chip FPGA in accordance with the electronic design automation design methodology. Due to large torque ripples in low speed PMSM,the hysteresis controller in a conventional PMSM DTC was replaced by a fuzzy controller. This FPGA scheme integrates the direct torque controller strategy,the time speed measurement algorithm,the fuzzy regulating technique and the space vector pulse width modulation principle. Experimental results indicate the fuzzy controller can provide a controllable speed at 20 r min-1 and torque at 330 N m with satisfactory dynamic and static performance. Furthermore,the results show that this new control strategy decreases the torque ripple drastically and enhances control performance.展开更多
Fuzzy systems are currently being used in a wide field of industrial and scientific applications.Since the design and especially the optimization process of fuzzy systems can be very time consuming,it is convenient to...Fuzzy systems are currently being used in a wide field of industrial and scientific applications.Since the design and especially the optimization process of fuzzy systems can be very time consuming,it is convenient to have algorithms which construct and optimize them automatically.In order to improve the system stability and raise the response speed,a new control scheme,direct-torque neuro-fuzzy control for induction motor drive,was put forward.The design and tuning procedure have been described.Also,the improved stator flux estimation algorithm,which guarantees eccentric estimated flux has been proposed.展开更多
Three-phase induction motors are becoming increasingly utilized in industrialfield due to their better efficiency and simple manufacture.The speed control of an induction motor is essential in a variety of applications,...Three-phase induction motors are becoming increasingly utilized in industrialfield due to their better efficiency and simple manufacture.The speed control of an induction motor is essential in a variety of applications,but it is dif-ficult to control.This research analyses the three-phase induction motor’s perfor-mance usingfield-oriented control(FOC)and direct torque control(DTC)techniques.The major aim of this work is to provide a critical evaluation of devel-oping a simple speed controller for induction motors with improving the perfor-mance of Induction Motor(IM).For controlling a motor,different optimization approaches are accessible;in this research,a Fuzzy Logic Controller(FLC)with Fractional Order Darwinian Particle Swarm Optimization(FODPSO)algorithm is presented to control the induction motor.The FOC and DTC are controlled using FODPSO,and their performance is compared to the traditional FOC and DTC technique.Each scheme had its own simulation model,and the results were com-pared using hardware experimental and MATLAB-Simulink.In terms of time domain specifications and torque improvement,the proposed technique surpasses the existing method.展开更多
Recently, artificial intelligence technique is increasingly receiving attention in solving complex and practical problem and they are widely applying in electrical machine domain. The authors consider also the direct ...Recently, artificial intelligence technique is increasingly receiving attention in solving complex and practical problem and they are widely applying in electrical machine domain. The authors consider also the direct torque control (DTC) as an alternative to conventional methods of control by pulse width modulation (PWM) and by Field oriented control (FOC), so the application of the DTC based on artificial intelligence can show more advantages and simplified control algorithms with high performance. For this reason, the objectives of this paper can be divided into two parts, the first part is to apply neural networks and fuzzy logic techniques to the DTC control in the presence of a loop speed control comparing to the conventional regulators (as PI) to show the feasibility of these approaches, the second part is to further improve the performance of the neural network by using a neural-fuzzy regulator which combine the advantages of two techniques. Simulation results confirm the validity of the proposed techniques.展开更多
In this paper, three intelligent approaches were proposed, applied to direct torque control (DTC) of induction motor drive to replace conventional hysteresis comparators and selection table, namely fuzzy logic, arti...In this paper, three intelligent approaches were proposed, applied to direct torque control (DTC) of induction motor drive to replace conventional hysteresis comparators and selection table, namely fuzzy logic, artificial neural network and adaptive neuro-fuzzy inference system (ANFIS). The simulated results obtained demonstrate the feasibility of the adaptive network-based fuzzy inference system based direct torque control (ANFIS-DTC). Compared with the classical direct torque control, fuzzy logic based direct torque control (FL-DTC), and neural networks based direct torque control (NN- DTC), the proposed ANFIS-based scheme optimizes the electromagnetic torque and stator flux ripples, and incurs much shorter execution times and hence the errors caused by control time delays are minimized. The validity of the proposed methods is confirmed by simulation results.展开更多
基金Project supported by Faculty of Technology,Department of Electrical Engineering,University of Batna,Algeria
文摘This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance.
基金the Natural Science Foundation of Hubei Province (No.2005ABA301)
文摘A high-performance digital servo system built on the platform of a field programmable gate array (FPGA),a fully digitized hardware design scheme of a direct torque control (DTC) and a low speed permanent magnet synchronous motor (PMSM) is proposed. The DTC strategy of PMSM is described with Verilog hardware description language and is employed on-chip FPGA in accordance with the electronic design automation design methodology. Due to large torque ripples in low speed PMSM,the hysteresis controller in a conventional PMSM DTC was replaced by a fuzzy controller. This FPGA scheme integrates the direct torque controller strategy,the time speed measurement algorithm,the fuzzy regulating technique and the space vector pulse width modulation principle. Experimental results indicate the fuzzy controller can provide a controllable speed at 20 r min-1 and torque at 330 N m with satisfactory dynamic and static performance. Furthermore,the results show that this new control strategy decreases the torque ripple drastically and enhances control performance.
文摘Fuzzy systems are currently being used in a wide field of industrial and scientific applications.Since the design and especially the optimization process of fuzzy systems can be very time consuming,it is convenient to have algorithms which construct and optimize them automatically.In order to improve the system stability and raise the response speed,a new control scheme,direct-torque neuro-fuzzy control for induction motor drive,was put forward.The design and tuning procedure have been described.Also,the improved stator flux estimation algorithm,which guarantees eccentric estimated flux has been proposed.
文摘Three-phase induction motors are becoming increasingly utilized in industrialfield due to their better efficiency and simple manufacture.The speed control of an induction motor is essential in a variety of applications,but it is dif-ficult to control.This research analyses the three-phase induction motor’s perfor-mance usingfield-oriented control(FOC)and direct torque control(DTC)techniques.The major aim of this work is to provide a critical evaluation of devel-oping a simple speed controller for induction motors with improving the perfor-mance of Induction Motor(IM).For controlling a motor,different optimization approaches are accessible;in this research,a Fuzzy Logic Controller(FLC)with Fractional Order Darwinian Particle Swarm Optimization(FODPSO)algorithm is presented to control the induction motor.The FOC and DTC are controlled using FODPSO,and their performance is compared to the traditional FOC and DTC technique.Each scheme had its own simulation model,and the results were com-pared using hardware experimental and MATLAB-Simulink.In terms of time domain specifications and torque improvement,the proposed technique surpasses the existing method.
文摘Recently, artificial intelligence technique is increasingly receiving attention in solving complex and practical problem and they are widely applying in electrical machine domain. The authors consider also the direct torque control (DTC) as an alternative to conventional methods of control by pulse width modulation (PWM) and by Field oriented control (FOC), so the application of the DTC based on artificial intelligence can show more advantages and simplified control algorithms with high performance. For this reason, the objectives of this paper can be divided into two parts, the first part is to apply neural networks and fuzzy logic techniques to the DTC control in the presence of a loop speed control comparing to the conventional regulators (as PI) to show the feasibility of these approaches, the second part is to further improve the performance of the neural network by using a neural-fuzzy regulator which combine the advantages of two techniques. Simulation results confirm the validity of the proposed techniques.
文摘In this paper, three intelligent approaches were proposed, applied to direct torque control (DTC) of induction motor drive to replace conventional hysteresis comparators and selection table, namely fuzzy logic, artificial neural network and adaptive neuro-fuzzy inference system (ANFIS). The simulated results obtained demonstrate the feasibility of the adaptive network-based fuzzy inference system based direct torque control (ANFIS-DTC). Compared with the classical direct torque control, fuzzy logic based direct torque control (FL-DTC), and neural networks based direct torque control (NN- DTC), the proposed ANFIS-based scheme optimizes the electromagnetic torque and stator flux ripples, and incurs much shorter execution times and hence the errors caused by control time delays are minimized. The validity of the proposed methods is confirmed by simulation results.