Venture capital investments are characterized by high input,high yield,and high risk.Due to the complexity of the market environment,stage-by-stage investment is becoming increasingly important.Traditional evaluation ...Venture capital investments are characterized by high input,high yield,and high risk.Due to the complexity of the market environment,stage-by-stage investment is becoming increasingly important.Traditional evaluation methods like comparison,proportion,maturity,internal rate of return,scenario analysis,decision trees,and net present value cannot fully consider the uncertainty and stage characteristics of the project.The fuzzy real options method addresses this by combining real option theory,fuzzy number theory,and composite option theory to provide a more accurate and objective evaluation of Public-Private Partnership(PPP)projects.It effectively considers the interaction of options and the ambiguity of project parameters,making it a valuable tool for project evaluation in the context of venture capital investment.展开更多
[Objective] The aim was to propose a new entropy weight fuzzy compre- hensive evaluation method for assessing cotton salt tolerance, realizing the objective, accurate and comprehensive evaluation of salt tolerance of ...[Objective] The aim was to propose a new entropy weight fuzzy compre- hensive evaluation method for assessing cotton salt tolerance, realizing the objective, accurate and comprehensive evaluation of salt tolerance of cotton. [Method] A sand culture experiment under salt stress of 150 mmol/L of NaCI was designed. The in- dicator weight was determined with the entropy weight fuzzy comprehensive evalu- ation method, based on the salt injury index of indicators. The salt tolerance of cotton was evaluated comprehensively. [Result] At the germination stage, the entropy and weight of salt injury index of germination energy, vigor index, hypocotyl length and fresh weight were highest, followed by germination rate and germination index, and of root length were lowest. At the seedling stage, the entropy and weight of salt injury index of plasma membrane permeability, root vigor and leaf expansion rate were highest, followed by plant height and net photosynthetic rate, and of shoot dry weight and root dry weight were lowest. The salt tolerance of cotton differed a- mong growth stages and cultivars. Among the 11 cultivars, CCRI-44 and CCRI-75 were steadily salt-tolerant at both germination and seedling stages; CCRI-17, Sumi- an 22, Sumian 15 and Dexiamianl had a stable moderate salt tolerance; while Sumian 12 and Simian 3 were steadily salt-sensitive. [Conclusion] The evaluated result was objective and exact, which indicated that this method could be used in comprehensive evaluation of salt tolerance of cotton.展开更多
[Objective] This study was to provide references for the evaluation of water quality in aquaculture ponds by evaluating the pond water quality using fuzzy comprehensive evaluation method based on entropy weight. [Meth...[Objective] This study was to provide references for the evaluation of water quality in aquaculture ponds by evaluating the pond water quality using fuzzy comprehensive evaluation method based on entropy weight. [Method] The fuzzy compre- hensive evaluation method based on entropy weight was used to evaluate the water quality in the ponds with Ukraine scale carp (Cyprinus carpio) as the main cultivated fish. The average size of the fish was 71.4 g/ind, and totally three groups of pond were set with the population density of 6 000, 9 000, 12 000 ind/hm2. [Result] According to the GB3838-2002 Environmental Quality Standards for Surface Water of China, the water quality of 6 000 ind/hm2 group was Grade I, and the water quality of 9 000 and 12 000 ind/hm2 were Grade V. [Conclusion] With the increasing of feeding density, the pond water quality would worsen, however, there is no difference on water quality between 9 000 and 12 000 ind/hm2 groups.展开更多
Considering the difficulty of fuzzy synthetic evaluation method in calculation of the multiple factors and ignorance of the relationship among evaluating objects, a new weight evaluation process using entropy method w...Considering the difficulty of fuzzy synthetic evaluation method in calculation of the multiple factors and ignorance of the relationship among evaluating objects, a new weight evaluation process using entropy method was introduced. This improved method for determination of weight of the evaluating indicators was applied in water quality assessment of the Three Gorges reservoir area. The results showed that this method was favorable for fuzzy synthetic evaluation when there were more than one evaluating objects. One calculation was enough for calculating every monitoring point. Compared with the original evaluation method, the method predigested the fuzzy synthetic evaluation process greatly and the evaluation results are more reasonable.展开更多
High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis mode...High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis models are so computationally expensive that the time required in design optimization is usually unacceptable.In order to improve the efficiency of optimization involving high fidelity analysis models,the optimization efficiency can be upgraded through applying surrogates to approximate the computationally expensive models,which can greately reduce the computation time.An efficient heuristic global optimization method using adaptive radial basis function(RBF) based on fuzzy clustering(ARFC) is proposed.In this method,a novel algorithm of maximin Latin hypercube design using successive local enumeration(SLE) is employed to obtain sample points with good performance in both space-filling and projective uniformity properties,which does a great deal of good to metamodels accuracy.RBF method is adopted for constructing the metamodels,and with the increasing the number of sample points the approximation accuracy of RBF is gradually enhanced.The fuzzy c-means clustering method is applied to identify the reduced attractive regions in the original design space.The numerical benchmark examples are used for validating the performance of ARFC.The results demonstrates that for most application examples the global optima are effectively obtained and comparison with adaptive response surface method(ARSM) proves that the proposed method can intuitively capture promising design regions and can efficiently identify the global or near-global design optimum.This method improves the efficiency and global convergence of the optimization problems,and gives a new optimization strategy for engineering design optimization problems involving computationally expensive models.展开更多
The obstacle for idea generation in fuzzy front end (FFE) is difficult to apply knowledge in different fields for designers. Theory of inventive problem solving TRIZ and computer-aided innovation systems (CAIs) wh...The obstacle for idea generation in fuzzy front end (FFE) is difficult to apply knowledge in different fields for designers. Theory of inventive problem solving TRIZ and computer-aided innovation systems (CAIs) which are TRIZ-base software systems with a knowledge base provide a framework for knowledge application in different fields. The major methods in TRIZ are selected, which have four types. The problems to be solved for each method are summarized and mapping from the problems to the methods is given. Systematic method with eight paths to integrate the methods and problems is formed. A case study shows the idea generation in FFE using the integrated method step by step.展开更多
The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy imp...The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy implications by means of a type of impli- cations and a parameter on the unit interval, then uses them to establish fully implicational reasoning methods for interval-valued fuzzy modus ponens (IFMP) and interval-valued fuzzy modus tel- lens (IFMT) problems. At the same time the reversibility properties of these methods are analyzed and the reversible conditions are given. It is shown that the existing unified forms of α-triple I (the abbreviation of triple implications) methods for FMP and FMT can be seen as the particular cases of our methods for IFMP and IFMT.展开更多
Fuzzy mathematics is an important means to quantitatively evaluate the properties of fault sealing in petroleum reservoirs.To accurately study fault sealing,the comprehensive quantitative evaluation method of fuzzy ma...Fuzzy mathematics is an important means to quantitatively evaluate the properties of fault sealing in petroleum reservoirs.To accurately study fault sealing,the comprehensive quantitative evaluation method of fuzzy mathematics is improved based on a previous study.First,the single-factor membership degree is determined using the dynamic clustering method,then a single-factor evaluation matrix is constructed using a continuous grading function,and finally,the probability distribution of the evaluation grade in a fuzzy evaluation matrix is analyzed.In this study,taking the F1 fault located in the northeastern Chepaizi Bulge as an example,the sealing properties of faults in different strata are quantitatively evaluated using both an improved and an un-improved comprehensive fuzzy mathematics quantitative evaluation method.Based on current oil and gas distribution,it is found that our evaluation results before and after improvement are significantly different.For faults in"best"and"poorest"intervals,our evaluation results are consistent with oil and gas distribution.However,for the faults in"good"or"poor"intervals,our evaluation is not completelyconsistent with oil and gas distribution.The improved evaluation results reflect the overall and local sealing properties of target zones and embody the nonuniformity of fault sealing,indicating the improved method is more suitable for evaluating fault sealing under complicated conditions.展开更多
For same cases the rules of monosource fuzzy numbers con be used into the solution of fuzzy stochastic finite element equations in engineering. This method can reduce the computing quantity of the solution. It can be ...For same cases the rules of monosource fuzzy numbers con be used into the solution of fuzzy stochastic finite element equations in engineering. This method can reduce the computing quantity of the solution. It can be proved that the amount of the solution is nearly as much as that with the general stochastic finite element method (SFEM). In addition, a new method to appreciate the structural fuzzy failure probability is presented for the needs of the modem engineering design.展开更多
Community resilience is becoming a growing concern for authorities and decision makers.This paper introduces two indicator-based methods to evaluate the resilience of communities based on the PEOPLES framework.PEOPLES...Community resilience is becoming a growing concern for authorities and decision makers.This paper introduces two indicator-based methods to evaluate the resilience of communities based on the PEOPLES framework.PEOPLES is a multi-layered framework that defines community resilience using seven dimensions.Each of the dimensions is described through a set of resilience indicators collected from literature and they are linked to a measure allowing the analytical computation of the indicator’s performance.The first method proposed in this paper requires data on previous disasters as an input and returns as output a performance function for each indicator and a performance function for the whole community.The second method exploits a knowledge-based fuzzy modeling for its implementation.This method allows a quantitative evaluation of the PEOPLES indicators using descriptive knowledge rather than deterministic data including the uncertainty involved in the analysis.The output of the fuzzy-based method is a resilience index for each indicator as well as a resilience index for the community.The paper also introduces an open source online tool in which the first method is implemented.A case study illustrating the application of the first method and the usage of the tool is also provided in the paper.展开更多
A new numerical technique named as fuzzy finite difference method is proposed to solve the heat conduction problems with fuzzy uncertainties in both the phys- ical parameters and initial/boundary conditions. In virtue...A new numerical technique named as fuzzy finite difference method is proposed to solve the heat conduction problems with fuzzy uncertainties in both the phys- ical parameters and initial/boundary conditions. In virtue of the level-cut method, the difference discrete equations with fuzzy parameters are equivalently transformed into groups of interval equations. New stability analysis theory suited to fuzzy difference schemes is developed. Based on the parameter perturbation method, the interval ranges of the uncertain temperature field can be approximately predicted. Subsequently, fuzzy solutions to the original difference equations are obtained by the fuzzy resolution theorem. Two numerical examples are given to demonstrate the feasibility and efficiency of the presented method for solving both steady-state and transient heat conduction problems.展开更多
A new fuzzy stochastic finite element method based on the fuzzy factor method and random factor method is given and the analysis of structural dynamic characteristic for fuzzy stochastic truss structures is presented....A new fuzzy stochastic finite element method based on the fuzzy factor method and random factor method is given and the analysis of structural dynamic characteristic for fuzzy stochastic truss structures is presented. Considering the fuzzy randomness of the structural physical parameters and geometric dimensions simultaneously, the structural stiffness and mass matrices axe constructed based on the fuzzy factor method and random factor method; from the Rayleigh's quotient of structural vibration, the structural fuzzy random dynamic characteristic is obtained by means of the interval arithmetic; the fuzzy numeric characteristics of dynamic characteristic axe then derived by using the random variable's moment function method and algebra synthesis method. Two examples axe used to illustrate the validity and rationality of the method given. The advantage of this method is that the effect of the fuzzy randomness of one of the structural parameters on the fuzzy randomness of the dynamic characteristic can be reflected expediently and objectively.展开更多
The fuzzy integration evaluation method (FIEM) is studied in order to select the best orbital elements from the multi-group initial orbits determined by a satellite TT&C (Tracking, Telemetry and Control) center w...The fuzzy integration evaluation method (FIEM) is studied in order to select the best orbital elements from the multi-group initial orbits determined by a satellite TT&C (Tracking, Telemetry and Control) center with all kinds of data sources. By employing FIEM together with the experience of TT&C experts, the index system to evaluate the selection of the best initial orbits is established after the data sources and orbit determination theories are studied. Besides, the concrete steps in employing the method are presented. Moreover, by taking the objects to be evaluated as evaluation experts, the problem of how to generate evaluation matrices is solved. Through practical application, the method to select the best initial orbital elements has been proved to be flexible and effective The originality of the method is to find a new evaluation criterion (comparing the actually tracked orbits) replacing the traditional one (comparing the nominal orbits) for selecting the best orbital elements.展开更多
An extended compromise ratio method(CRM) based on fuzzy distances is developed to solve fuzzy multi-attribute group decision making problems in which weights of attributes and ratings of alternatives on attributes a...An extended compromise ratio method(CRM) based on fuzzy distances is developed to solve fuzzy multi-attribute group decision making problems in which weights of attributes and ratings of alternatives on attributes are expressed with values of linguistic variables parameterized using triangular fuzzy numbers.A compromise solution is determined by introducing the ranking index based on the concept that the chosen alternative should be as close as possible to the positive ideal solution and as far away from the negative ideal solution as possible simultaneously.This proposed method is compared with other existing methods to show its feasibility and effectiveness and illustrated with an example of the military route selection problem as one of the possible applications.展开更多
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d...The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis.展开更多
This paper firstly introduced the degree of livability of a city from the social civilization,economic affluence,environmental beauty,resource carrying capacity,and life convenience. Based on the principle of the fuzz...This paper firstly introduced the degree of livability of a city from the social civilization,economic affluence,environmental beauty,resource carrying capacity,and life convenience. Based on the principle of the fuzzy comprehensive evaluation,it analyzed the connection between influencing factors,and established a comprehensive evaluation model for calculation of the livability index of a city. Finally,it obtained the relative livability of each city and the ranking of livability of each city.展开更多
The key component of finite element analysis of structures with fuzzy parameters, which is associated with handling of some fuzzy information and arithmetic relation of fuzzy variables, was the solving of the governin...The key component of finite element analysis of structures with fuzzy parameters, which is associated with handling of some fuzzy information and arithmetic relation of fuzzy variables, was the solving of the governing equations of fuzzy finite element method. Based on a given interval representation of fuzzy numbers, some arithmetic rules of fuzzy numbers and fuzzy variables were developed in terms of the properties of interval arithmetic. According to the rules and by the theory of interval finite element method, procedures for solving the static governing equations of fuzzy finite element method of structures were presented. By the proposed procedure, the possibility distributions of responses of fuzzy structures can be generated in terms of the membership functions of the input fuzzy numbers. It is shown by a numerical example that the computational burden of the presented procedures is low and easy to implement. The effectiveness and usefulness of the presented procedures are also illustrated.展开更多
In this paper,we propose a local fuzzy method based on the idea of "p-strong" community to detect the disjoint and overlapping communities in networks.In the method,a refined agglomeration rule is designed for agglo...In this paper,we propose a local fuzzy method based on the idea of "p-strong" community to detect the disjoint and overlapping communities in networks.In the method,a refined agglomeration rule is designed for agglomerating nodes into local communities,and the overlapping nodes are detected based on the idea of making each community strong.We propose a contribution coefficient bvcito measure the contribution of an overlapping node to each of its belonging communities,and the fuzzy coefficients of the overlapping node can be obtained by normalizing the bvci to all its belonging communities.The running time of our method is analyzed and varies linearly with network size.We investigate our method on the computergenerated networks and real networks.The testing results indicate that the accuracy of our method in detecting disjoint communities is higher than those of the existing local methods and our method is efficient for detecting the overlapping nodes with fuzzy coefficients.Furthermore,the local optimizing scheme used in our method allows us to partly solve the resolution problem of the global modularity.展开更多
A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a ...A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a high-gain observer is used to estimate the derivatives of the system output. The closed-loop system is proven to be semiglobally uniformly ultimately bounded. In addition, it is shown that if the approximation accuracy of the fuzzy logic system is high enough and the observer gain is chosen sufficiently large, an arbitrarily small tracking error can be achieved. Simulation results verify the effectiveness of the newly designed scheme and the theoretical discussion.展开更多
The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of ...The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of refracturing candidate is often very difficult. In this paper, a novel approach combining data analysis techniques and fuzzy clustering was proposed to select refracturing candidate. First, the analysis techniques were used to quantitatively calculate the weight coefficient and determine the key factors. Then, the idealized refracturing well was established by considering the main factors. Fuzzy clustering was applied to evaluate refracturing potential. Finally, reservoirs numerical simulation was used to further evaluate reservoirs energy and material basis of the optimum refracturing candidates. The hybrid method has been successfully applied to a tight oil reservoir in China. The average steady production was 15.8 t/d after refracturing treatment, increasing significantly compared with previous status. The research results can guide the development of tight oil and gas reservoirs effectively.展开更多
基金The research was funded by VSB-Technical University of Ostrava,the SGS Projects SP2022/58,SP2023/008.Huanyu Li,Ing.,Economic Faculty,VSB-TUO,Ostrava,Czech Republic。
文摘Venture capital investments are characterized by high input,high yield,and high risk.Due to the complexity of the market environment,stage-by-stage investment is becoming increasingly important.Traditional evaluation methods like comparison,proportion,maturity,internal rate of return,scenario analysis,decision trees,and net present value cannot fully consider the uncertainty and stage characteristics of the project.The fuzzy real options method addresses this by combining real option theory,fuzzy number theory,and composite option theory to provide a more accurate and objective evaluation of Public-Private Partnership(PPP)projects.It effectively considers the interaction of options and the ambiguity of project parameters,making it a valuable tool for project evaluation in the context of venture capital investment.
基金Supported by Jiangsu Agricultural Science and Technology Innovation Fund(CX(12)5035)Jiangsu Agricultural "Three New Engineering" Project(SXGC[2014]299)~~
文摘[Objective] The aim was to propose a new entropy weight fuzzy compre- hensive evaluation method for assessing cotton salt tolerance, realizing the objective, accurate and comprehensive evaluation of salt tolerance of cotton. [Method] A sand culture experiment under salt stress of 150 mmol/L of NaCI was designed. The in- dicator weight was determined with the entropy weight fuzzy comprehensive evalu- ation method, based on the salt injury index of indicators. The salt tolerance of cotton was evaluated comprehensively. [Result] At the germination stage, the entropy and weight of salt injury index of germination energy, vigor index, hypocotyl length and fresh weight were highest, followed by germination rate and germination index, and of root length were lowest. At the seedling stage, the entropy and weight of salt injury index of plasma membrane permeability, root vigor and leaf expansion rate were highest, followed by plant height and net photosynthetic rate, and of shoot dry weight and root dry weight were lowest. The salt tolerance of cotton differed a- mong growth stages and cultivars. Among the 11 cultivars, CCRI-44 and CCRI-75 were steadily salt-tolerant at both germination and seedling stages; CCRI-17, Sumi- an 22, Sumian 15 and Dexiamianl had a stable moderate salt tolerance; while Sumian 12 and Simian 3 were steadily salt-sensitive. [Conclusion] The evaluated result was objective and exact, which indicated that this method could be used in comprehensive evaluation of salt tolerance of cotton.
基金Supported by the Major Project of Application Foundation and Advanced Technology of Tianjin (the Natural Science Foundation of Tianjin) (09JCZDJC19200),China~~
文摘[Objective] This study was to provide references for the evaluation of water quality in aquaculture ponds by evaluating the pond water quality using fuzzy comprehensive evaluation method based on entropy weight. [Method] The fuzzy compre- hensive evaluation method based on entropy weight was used to evaluate the water quality in the ponds with Ukraine scale carp (Cyprinus carpio) as the main cultivated fish. The average size of the fish was 71.4 g/ind, and totally three groups of pond were set with the population density of 6 000, 9 000, 12 000 ind/hm2. [Result] According to the GB3838-2002 Environmental Quality Standards for Surface Water of China, the water quality of 6 000 ind/hm2 group was Grade I, and the water quality of 9 000 and 12 000 ind/hm2 were Grade V. [Conclusion] With the increasing of feeding density, the pond water quality would worsen, however, there is no difference on water quality between 9 000 and 12 000 ind/hm2 groups.
基金The National Natural Science Foundation of China (No. 50378008)
文摘Considering the difficulty of fuzzy synthetic evaluation method in calculation of the multiple factors and ignorance of the relationship among evaluating objects, a new weight evaluation process using entropy method was introduced. This improved method for determination of weight of the evaluating indicators was applied in water quality assessment of the Three Gorges reservoir area. The results showed that this method was favorable for fuzzy synthetic evaluation when there were more than one evaluating objects. One calculation was enough for calculating every monitoring point. Compared with the original evaluation method, the method predigested the fuzzy synthetic evaluation process greatly and the evaluation results are more reasonable.
基金supported by National Natural Science Foundation of China (Grant Nos. 50875024,51105040)Excellent Young Scholars Research Fund of Beijing Institute of Technology,China (Grant No.2010Y0102)Defense Creative Research Group Foundation of China(Grant No. GFTD0803)
文摘High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis models are so computationally expensive that the time required in design optimization is usually unacceptable.In order to improve the efficiency of optimization involving high fidelity analysis models,the optimization efficiency can be upgraded through applying surrogates to approximate the computationally expensive models,which can greately reduce the computation time.An efficient heuristic global optimization method using adaptive radial basis function(RBF) based on fuzzy clustering(ARFC) is proposed.In this method,a novel algorithm of maximin Latin hypercube design using successive local enumeration(SLE) is employed to obtain sample points with good performance in both space-filling and projective uniformity properties,which does a great deal of good to metamodels accuracy.RBF method is adopted for constructing the metamodels,and with the increasing the number of sample points the approximation accuracy of RBF is gradually enhanced.The fuzzy c-means clustering method is applied to identify the reduced attractive regions in the original design space.The numerical benchmark examples are used for validating the performance of ARFC.The results demonstrates that for most application examples the global optima are effectively obtained and comparison with adaptive response surface method(ARSM) proves that the proposed method can intuitively capture promising design regions and can efficiently identify the global or near-global design optimum.This method improves the efficiency and global convergence of the optimization problems,and gives a new optimization strategy for engineering design optimization problems involving computationally expensive models.
基金National Natural Science Foundation of China (No.50675059)National Hi-tech Research and Development Program of China (863 Program,No.2006AA04Z109)
文摘The obstacle for idea generation in fuzzy front end (FFE) is difficult to apply knowledge in different fields for designers. Theory of inventive problem solving TRIZ and computer-aided innovation systems (CAIs) which are TRIZ-base software systems with a knowledge base provide a framework for knowledge application in different fields. The major methods in TRIZ are selected, which have four types. The problems to be solved for each method are summarized and mapping from the problems to the methods is given. Systematic method with eight paths to integrate the methods and problems is formed. A case study shows the idea generation in FFE using the integrated method step by step.
基金supported by the National Natural Science Foundation of China(60774100)the Natural Science Foundation of Shandong Province of China(Y2007A15)
文摘The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy implications by means of a type of impli- cations and a parameter on the unit interval, then uses them to establish fully implicational reasoning methods for interval-valued fuzzy modus ponens (IFMP) and interval-valued fuzzy modus tel- lens (IFMT) problems. At the same time the reversibility properties of these methods are analyzed and the reversible conditions are given. It is shown that the existing unified forms of α-triple I (the abbreviation of triple implications) methods for FMP and FMT can be seen as the particular cases of our methods for IFMP and IFMT.
基金supported by the Science and Technology Project of Universities and Colleges in Shandong Province ‘‘Investigation on diagenetic environment and transformation pattern of red-bed reservoirs in the rift basins’’ (No. J16LH52)
文摘Fuzzy mathematics is an important means to quantitatively evaluate the properties of fault sealing in petroleum reservoirs.To accurately study fault sealing,the comprehensive quantitative evaluation method of fuzzy mathematics is improved based on a previous study.First,the single-factor membership degree is determined using the dynamic clustering method,then a single-factor evaluation matrix is constructed using a continuous grading function,and finally,the probability distribution of the evaluation grade in a fuzzy evaluation matrix is analyzed.In this study,taking the F1 fault located in the northeastern Chepaizi Bulge as an example,the sealing properties of faults in different strata are quantitatively evaluated using both an improved and an un-improved comprehensive fuzzy mathematics quantitative evaluation method.Based on current oil and gas distribution,it is found that our evaluation results before and after improvement are significantly different.For faults in"best"and"poorest"intervals,our evaluation results are consistent with oil and gas distribution.However,for the faults in"good"or"poor"intervals,our evaluation is not completelyconsistent with oil and gas distribution.The improved evaluation results reflect the overall and local sealing properties of target zones and embody the nonuniformity of fault sealing,indicating the improved method is more suitable for evaluating fault sealing under complicated conditions.
文摘For same cases the rules of monosource fuzzy numbers con be used into the solution of fuzzy stochastic finite element equations in engineering. This method can reduce the computing quantity of the solution. It can be proved that the amount of the solution is nearly as much as that with the general stochastic finite element method (SFEM). In addition, a new method to appreciate the structural fuzzy failure probability is presented for the needs of the modem engineering design.
基金European Research Council under Grant Agreement No.ERC_IDEAL RESCUE_637842 of the project IDEAL RESCUE-Integrated Design and Control of Sustainable Communities during Emergencies
文摘Community resilience is becoming a growing concern for authorities and decision makers.This paper introduces two indicator-based methods to evaluate the resilience of communities based on the PEOPLES framework.PEOPLES is a multi-layered framework that defines community resilience using seven dimensions.Each of the dimensions is described through a set of resilience indicators collected from literature and they are linked to a measure allowing the analytical computation of the indicator’s performance.The first method proposed in this paper requires data on previous disasters as an input and returns as output a performance function for each indicator and a performance function for the whole community.The second method exploits a knowledge-based fuzzy modeling for its implementation.This method allows a quantitative evaluation of the PEOPLES indicators using descriptive knowledge rather than deterministic data including the uncertainty involved in the analysis.The output of the fuzzy-based method is a resilience index for each indicator as well as a resilience index for the community.The paper also introduces an open source online tool in which the first method is implemented.A case study illustrating the application of the first method and the usage of the tool is also provided in the paper.
基金supported by the National Special Fund for Major Research Instrument Development(2011YQ140145)111 Project(B07009)+1 种基金the National Natural Science Foundation of China(11002013)Defense Industrial Technology Development Program(A2120110001 and B2120110011)
文摘A new numerical technique named as fuzzy finite difference method is proposed to solve the heat conduction problems with fuzzy uncertainties in both the phys- ical parameters and initial/boundary conditions. In virtue of the level-cut method, the difference discrete equations with fuzzy parameters are equivalently transformed into groups of interval equations. New stability analysis theory suited to fuzzy difference schemes is developed. Based on the parameter perturbation method, the interval ranges of the uncertain temperature field can be approximately predicted. Subsequently, fuzzy solutions to the original difference equations are obtained by the fuzzy resolution theorem. Two numerical examples are given to demonstrate the feasibility and efficiency of the presented method for solving both steady-state and transient heat conduction problems.
基金Project supported by the Natural Science Foundation of Shaanxi Province of China (No,A200214)
文摘A new fuzzy stochastic finite element method based on the fuzzy factor method and random factor method is given and the analysis of structural dynamic characteristic for fuzzy stochastic truss structures is presented. Considering the fuzzy randomness of the structural physical parameters and geometric dimensions simultaneously, the structural stiffness and mass matrices axe constructed based on the fuzzy factor method and random factor method; from the Rayleigh's quotient of structural vibration, the structural fuzzy random dynamic characteristic is obtained by means of the interval arithmetic; the fuzzy numeric characteristics of dynamic characteristic axe then derived by using the random variable's moment function method and algebra synthesis method. Two examples axe used to illustrate the validity and rationality of the method given. The advantage of this method is that the effect of the fuzzy randomness of one of the structural parameters on the fuzzy randomness of the dynamic characteristic can be reflected expediently and objectively.
基金This project was supported by the Evaluate Quality of Satellite TT&C Mission(C0112)
文摘The fuzzy integration evaluation method (FIEM) is studied in order to select the best orbital elements from the multi-group initial orbits determined by a satellite TT&C (Tracking, Telemetry and Control) center with all kinds of data sources. By employing FIEM together with the experience of TT&C experts, the index system to evaluate the selection of the best initial orbits is established after the data sources and orbit determination theories are studied. Besides, the concrete steps in employing the method are presented. Moreover, by taking the objects to be evaluated as evaluation experts, the problem of how to generate evaluation matrices is solved. Through practical application, the method to select the best initial orbital elements has been proved to be flexible and effective The originality of the method is to find a new evaluation criterion (comparing the actually tracked orbits) replacing the traditional one (comparing the nominal orbits) for selecting the best orbital elements.
基金supported by the National Natural Science Foundation of China (7087111770571086)
文摘An extended compromise ratio method(CRM) based on fuzzy distances is developed to solve fuzzy multi-attribute group decision making problems in which weights of attributes and ratings of alternatives on attributes are expressed with values of linguistic variables parameterized using triangular fuzzy numbers.A compromise solution is determined by introducing the ranking index based on the concept that the chosen alternative should be as close as possible to the positive ideal solution and as far away from the negative ideal solution as possible simultaneously.This proposed method is compared with other existing methods to show its feasibility and effectiveness and illustrated with an example of the military route selection problem as one of the possible applications.
文摘The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis.
文摘This paper firstly introduced the degree of livability of a city from the social civilization,economic affluence,environmental beauty,resource carrying capacity,and life convenience. Based on the principle of the fuzzy comprehensive evaluation,it analyzed the connection between influencing factors,and established a comprehensive evaluation model for calculation of the livability index of a city. Finally,it obtained the relative livability of each city and the ranking of livability of each city.
基金Foundation items:the National Natural Science Foundation of China(59575040,59575032)the Areonautics Science Foundation of China(00B53010)
文摘The key component of finite element analysis of structures with fuzzy parameters, which is associated with handling of some fuzzy information and arithmetic relation of fuzzy variables, was the solving of the governing equations of fuzzy finite element method. Based on a given interval representation of fuzzy numbers, some arithmetic rules of fuzzy numbers and fuzzy variables were developed in terms of the properties of interval arithmetic. According to the rules and by the theory of interval finite element method, procedures for solving the static governing equations of fuzzy finite element method of structures were presented. By the proposed procedure, the possibility distributions of responses of fuzzy structures can be generated in terms of the membership functions of the input fuzzy numbers. It is shown by a numerical example that the computational burden of the presented procedures is low and easy to implement. The effectiveness and usefulness of the presented procedures are also illustrated.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51278101 and 51578149)the Science and Technology Program of Ministry of Transport of China(Grant No.2015318J33080)+1 种基金the Jiangsu Provincial Post-doctoral Science Foundation,China(Grant No.1501046B)the Fundamental Research Funds for the Central Universities,China(Grant No.Y0201500219)
文摘In this paper,we propose a local fuzzy method based on the idea of "p-strong" community to detect the disjoint and overlapping communities in networks.In the method,a refined agglomeration rule is designed for agglomerating nodes into local communities,and the overlapping nodes are detected based on the idea of making each community strong.We propose a contribution coefficient bvcito measure the contribution of an overlapping node to each of its belonging communities,and the fuzzy coefficients of the overlapping node can be obtained by normalizing the bvci to all its belonging communities.The running time of our method is analyzed and varies linearly with network size.We investigate our method on the computergenerated networks and real networks.The testing results indicate that the accuracy of our method in detecting disjoint communities is higher than those of the existing local methods and our method is efficient for detecting the overlapping nodes with fuzzy coefficients.Furthermore,the local optimizing scheme used in our method allows us to partly solve the resolution problem of the global modularity.
基金This project was supported by the National Natural Science Foundation of China (90405011).
文摘A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a high-gain observer is used to estimate the derivatives of the system output. The closed-loop system is proven to be semiglobally uniformly ultimately bounded. In addition, it is shown that if the approximation accuracy of the fuzzy logic system is high enough and the observer gain is chosen sufficiently large, an arbitrarily small tracking error can be achieved. Simulation results verify the effectiveness of the newly designed scheme and the theoretical discussion.
基金Projects(51204054,51504203)supported by the National Natural Science Foundation of ChinaProject(2016ZX05023-001)supported by the National Science and Technology Major Project of China
文摘The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of refracturing candidate is often very difficult. In this paper, a novel approach combining data analysis techniques and fuzzy clustering was proposed to select refracturing candidate. First, the analysis techniques were used to quantitatively calculate the weight coefficient and determine the key factors. Then, the idealized refracturing well was established by considering the main factors. Fuzzy clustering was applied to evaluate refracturing potential. Finally, reservoirs numerical simulation was used to further evaluate reservoirs energy and material basis of the optimum refracturing candidates. The hybrid method has been successfully applied to a tight oil reservoir in China. The average steady production was 15.8 t/d after refracturing treatment, increasing significantly compared with previous status. The research results can guide the development of tight oil and gas reservoirs effectively.