Wise healthcare is a typical application of wireless sensor network(WSN), which uses sensors to monitor the physiological state of nursing targets and locate their position in case of an emergency situation. The locat...Wise healthcare is a typical application of wireless sensor network(WSN), which uses sensors to monitor the physiological state of nursing targets and locate their position in case of an emergency situation. The location of targets need to be determined and reported to the control center,and this leads to the localization problem. While localization in healthcare field demands high accuracy and regional adaptability, the information processing mechanism of human thinking has been introduced,which includes knowledge accumulation, knowledge fusion and knowledge expansion. Furthermore, a fuzzy decision based localization approach is proposed. Received signal strength(RSS) at references points are obtained and processed as position relationship indicators, using fuzzy set theory in the knowledge accumulation stage; after that, optimize degree of membership corresponding to each anchor nodes in different environments during knowledge fusion; the matching degree of reference points is further calculated and sorted in decision-making, and the coordinates of several points with the highest matching degree are utilized to estimate the location of unknown nodes while knowledge expansion. Simulation results show that the proposed algorithm get better accuracy performance compared to several traditional algorithms under different typical occasions.展开更多
[Objective]The aim was to overcome the shortage of being difficult to build land evaluation model when the impact factors had continuous value in the traditional land evaluation process,as well as to improve the intel...[Objective]The aim was to overcome the shortage of being difficult to build land evaluation model when the impact factors had continuous value in the traditional land evaluation process,as well as to improve the intelligibility of the land evaluation knowledge.[Method] The land evaluation method combining classification rule extracted by C4.5 algorithm with fuzzy decision was proposed in this study.[Result] The result of Second General Soil Survey of Guangdong Province had demonstrated that the method was convenient to extract classification rules,and by using only 100 rules,quantity correct rate 86.67% and area correct rate 84.80% of land evaluation could be obtained.[Conclusions] The use of C4.5 algorithm to obtain the rules,combined with fuzzy decision algorithm to build classifiers had got satisfactory results,which provided a practical algorithm for the land evaluation.展开更多
In the aluminum reduction process, aluminum uoride (AlF3) is added to lower the liquidus temperature of the electrolyte and increase the electrolytic ef ciency. Making the decision on the amount of AlF3 addi- tion (re...In the aluminum reduction process, aluminum uoride (AlF3) is added to lower the liquidus temperature of the electrolyte and increase the electrolytic ef ciency. Making the decision on the amount of AlF3 addi- tion (referred to in this work as MDAAA) is a complex and knowledge-based task that must take into con- sideration a variety of interrelated functions;in practice, this decision-making step is performed manually. Due to technician subjectivity and the complexity of the aluminum reduction cell, it is dif cult to guarantee the accuracy of MDAAA based on knowledge-driven or data-driven methods alone. Existing strategies for MDAAA have dif culty covering these complex causalities. In this work, a data and knowl- edge collaboration strategy for MDAAA based on augmented fuzzy cognitive maps (FCMs) is proposed. In the proposed strategy, the fuzzy rules are extracted by extended fuzzy k-means (EFKM) and fuzzy deci- sion trees, which are used to amend the initial structure provided by experts. The state transition algo- rithm (STA) is introduced to detect weight matrices that lead the FCMs to desired steady states. This study then experimentally compares the proposed strategy with some existing research. The results of the comparison show that the speed of FCMs convergence into a stable region based on the STA using the proposed strategy is faster than when using the differential Hebbian learning (DHL), particle swarm optimization (PSO), or genetic algorithm (GA) strategies. In addition, the accuracy of MDAAA based on the proposed method is better than those based on other methods. Accordingly, this paper provides a feasible and effective strategy for MDAAA.展开更多
The productivity and quality in the turning process can be improved by utilizing the predicted performance of the cutting tools.This research incorporates condition monitoring of a non-carbide tool insert using vibrat...The productivity and quality in the turning process can be improved by utilizing the predicted performance of the cutting tools.This research incorporates condition monitoring of a non-carbide tool insert using vibration analysis along with machine learning and fuzzy logic approach.A non-carbide tool insert is considered for the process of cutting operation in a semi-automatic lathe,where the condition of tool is monitored using vibration characteristics.The vibration signals for conditions such as heathy,damaged,thermal and flank were acquired with the help of piezoelectric transducer and data acquisition system.The descriptive statistical features were extracted from the acquired vibration signal using the feature extraction techniques.The extracted statistical features were selected using a feature selection process through J48 decision tree algorithm.The selected features were classified using J48 decision tree and fuzzy to develop the fault diagnosis model for the improved predictive analysis.The decision tree model produced the classification accuracy as 94.78%with five selected features.The developed fuzzy model produced the classification accuracy as 94.02%with five membership functions.Hence,the decision tree has been proposed as a suitable fault diagnosis model for predicting the tool insert health condition under different fault conditions.展开更多
The aim of this paper is to introduce the concept of a generalized Pythagorean fuzzy soft set(GPFSS),which is a combination of the generalized fuzzy soft sets and Pythagorean fuzzy sets.Several of important operations...The aim of this paper is to introduce the concept of a generalized Pythagorean fuzzy soft set(GPFSS),which is a combination of the generalized fuzzy soft sets and Pythagorean fuzzy sets.Several of important operations of GPFSS including complement,restricted union,and extended intersection are discussed.The basic properties of GPFSS are presented.Further,an algorithm of GPFSSs is given to solve the fuzzy soft decision-making.Finally,a comparative analysis between the GPFSS approach and some existing approaches is provided to show their reliability over them.展开更多
A high-speed comer detection algorithm based on fuzzy ID3 decision tree was proposed. In the algorithm, the Bresenham circle with 3-pixel radius was used as the test mask, overlapping the candidate comers with the nuc...A high-speed comer detection algorithm based on fuzzy ID3 decision tree was proposed. In the algorithm, the Bresenham circle with 3-pixel radius was used as the test mask, overlapping the candidate comers with the nucleus. Connected pixels on the circle were applied to compare the intensity value with the nucleus, with the membership function used to give the fuzzy result. The pixel with maximum information gain was chosen as the parent node to build a binary decision tree. Thus, the comer detector was derived. The pictures taken in Fengtai Railway Station in Beijing were used to test the method. The experimental results show that when the number of pixels on the test mask is chosen to be 9, best result can be obtained. The comer detector significantly outperforms existing detector in computational efficiency without sacrificing the quality and the method also provides high performance against Poisson noise and Gaussian blur.展开更多
Software developers endeavor to build their products with the least number of bugs.Despite this,many vulnerabilities are detected in software that threatens its integrity.Various automated software i.e.,vulnerability ...Software developers endeavor to build their products with the least number of bugs.Despite this,many vulnerabilities are detected in software that threatens its integrity.Various automated software i.e.,vulnerability scanners,are available in the market which helps detect and manage vulnerabilities in a computer,application,or a network.Hence,the choice of an appropriate vulnerability scanner is crucial to ensure efficient vulnerability management.The current work serves a dual purpose,first,to identify the key factors which affect the vulnerability discovery process in a network.The second,is to rank the popular vulnerability scanners based on the identified attributes.This will aid the firm in determining the best scanner for them considering multiple aspects.The multi-criterion decision making based ranking approach has been discussed using the Intuitionistic Fuzzy set(IFS)and Technique for Order of Preference by Similarity to Ideal Solution(TOPSIS)to rank the various scanners.Using IFS TOPSIS,the opinion of a whole group could be simultaneously considered in the vulnerability scanner selection.In this study,five popular vulnerability scanners,namely,Nessus,Fsecure Radar,Greenbone,Qualys,and Nexpose have been considered.The inputs of industry specialists i.e.,people who deal in software security and vulnerability management process have been taken for the ranking process.Using the proposed methodology,a hierarchical classification of the various vulnerability scanners could be achieved.The clear enumeration of the steps allows for easy adaptability of the model to varied situations.This study will help product developers become aware of the needs of the market and design better scanners.And from the user’s point of view,it will help the system administrators in deciding which scanner to deploy depending on the company’s needs and preferences.The current work is the first to use a Multi Criterion Group Decision Making technique in vulnerability scanner selection.展开更多
Generalized algorithms for solving problems of discrete, integer, and Boolean programming are discussed. These algorithms are associated with the method of normalized functions and are based on a combination of formal...Generalized algorithms for solving problems of discrete, integer, and Boolean programming are discussed. These algorithms are associated with the method of normalized functions and are based on a combination of formal and heuristic procedures. This allows one to obtain quasi-optimal solutions after a small number of steps, overcoming the NP-completeness of discrete optimization problems. Questions of constructing so-called “duplicate” algorithms are considered to improve the quality of discrete problem solutions. An approach to solving discrete problems with fuzzy coefficients in objective functions and constraints on the basis of modifying the generalized algorithms is considered. Questions of applying the generalized algorithms to solve multicriteria discrete problems are also discussed. The results of the paper are of a universal character and can be applied to the design, planning, operation, and control of systems and processes of different purposes. The results of the paper are already being used to solve power engineering problems.展开更多
Association rules and C4.5 rules can overcome the shortage of the traditional land evaluation methods and improve the intelligibility and efficiency of the land evaluation knowledge.In order to compare these two kinds...Association rules and C4.5 rules can overcome the shortage of the traditional land evaluation methods and improve the intelligibility and efficiency of the land evaluation knowledge.In order to compare these two kinds of classification rules in the application,two fuzzy classifiers were established by combining with fuzzy decision algorithm especially based on Second General Soil Survey of Guangdong Province.The results of experiments demonstrated that the fuzzy classifier based on association rules obtain a higher accuracy rate,but with more complex calculation process and more computational overhead;the fuzzy classifier based on C4.5 rules obtain a slightly lower accuracy,but with fast computation and simpler calculation.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 51677065)
文摘Wise healthcare is a typical application of wireless sensor network(WSN), which uses sensors to monitor the physiological state of nursing targets and locate their position in case of an emergency situation. The location of targets need to be determined and reported to the control center,and this leads to the localization problem. While localization in healthcare field demands high accuracy and regional adaptability, the information processing mechanism of human thinking has been introduced,which includes knowledge accumulation, knowledge fusion and knowledge expansion. Furthermore, a fuzzy decision based localization approach is proposed. Received signal strength(RSS) at references points are obtained and processed as position relationship indicators, using fuzzy set theory in the knowledge accumulation stage; after that, optimize degree of membership corresponding to each anchor nodes in different environments during knowledge fusion; the matching degree of reference points is further calculated and sorted in decision-making, and the coordinates of several points with the highest matching degree are utilized to estimate the location of unknown nodes while knowledge expansion. Simulation results show that the proposed algorithm get better accuracy performance compared to several traditional algorithms under different typical occasions.
基金Supported by Science and Technology Plan Project of Guangdong Province (2009B010900026,2009CD058,2009CD078,2009CD079,2009CD080)Special Funds for Support Program of Development of Modern Information Service Industry of Guangdong Province(06120840B0370124 )Fund Project of South China Agricultural University (2007K017)~~
文摘[Objective]The aim was to overcome the shortage of being difficult to build land evaluation model when the impact factors had continuous value in the traditional land evaluation process,as well as to improve the intelligibility of the land evaluation knowledge.[Method] The land evaluation method combining classification rule extracted by C4.5 algorithm with fuzzy decision was proposed in this study.[Result] The result of Second General Soil Survey of Guangdong Province had demonstrated that the method was convenient to extract classification rules,and by using only 100 rules,quantity correct rate 86.67% and area correct rate 84.80% of land evaluation could be obtained.[Conclusions] The use of C4.5 algorithm to obtain the rules,combined with fuzzy decision algorithm to build classifiers had got satisfactory results,which provided a practical algorithm for the land evaluation.
文摘In the aluminum reduction process, aluminum uoride (AlF3) is added to lower the liquidus temperature of the electrolyte and increase the electrolytic ef ciency. Making the decision on the amount of AlF3 addi- tion (referred to in this work as MDAAA) is a complex and knowledge-based task that must take into con- sideration a variety of interrelated functions;in practice, this decision-making step is performed manually. Due to technician subjectivity and the complexity of the aluminum reduction cell, it is dif cult to guarantee the accuracy of MDAAA based on knowledge-driven or data-driven methods alone. Existing strategies for MDAAA have dif culty covering these complex causalities. In this work, a data and knowl- edge collaboration strategy for MDAAA based on augmented fuzzy cognitive maps (FCMs) is proposed. In the proposed strategy, the fuzzy rules are extracted by extended fuzzy k-means (EFKM) and fuzzy deci- sion trees, which are used to amend the initial structure provided by experts. The state transition algo- rithm (STA) is introduced to detect weight matrices that lead the FCMs to desired steady states. This study then experimentally compares the proposed strategy with some existing research. The results of the comparison show that the speed of FCMs convergence into a stable region based on the STA using the proposed strategy is faster than when using the differential Hebbian learning (DHL), particle swarm optimization (PSO), or genetic algorithm (GA) strategies. In addition, the accuracy of MDAAA based on the proposed method is better than those based on other methods. Accordingly, this paper provides a feasible and effective strategy for MDAAA.
文摘The productivity and quality in the turning process can be improved by utilizing the predicted performance of the cutting tools.This research incorporates condition monitoring of a non-carbide tool insert using vibration analysis along with machine learning and fuzzy logic approach.A non-carbide tool insert is considered for the process of cutting operation in a semi-automatic lathe,where the condition of tool is monitored using vibration characteristics.The vibration signals for conditions such as heathy,damaged,thermal and flank were acquired with the help of piezoelectric transducer and data acquisition system.The descriptive statistical features were extracted from the acquired vibration signal using the feature extraction techniques.The extracted statistical features were selected using a feature selection process through J48 decision tree algorithm.The selected features were classified using J48 decision tree and fuzzy to develop the fault diagnosis model for the improved predictive analysis.The decision tree model produced the classification accuracy as 94.78%with five selected features.The developed fuzzy model produced the classification accuracy as 94.02%with five membership functions.Hence,the decision tree has been proposed as a suitable fault diagnosis model for predicting the tool insert health condition under different fault conditions.
文摘The aim of this paper is to introduce the concept of a generalized Pythagorean fuzzy soft set(GPFSS),which is a combination of the generalized fuzzy soft sets and Pythagorean fuzzy sets.Several of important operations of GPFSS including complement,restricted union,and extended intersection are discussed.The basic properties of GPFSS are presented.Further,an algorithm of GPFSSs is given to solve the fuzzy soft decision-making.Finally,a comparative analysis between the GPFSS approach and some existing approaches is provided to show their reliability over them.
基金Project(J2008X011) supported by the Natural Science Foundation of Ministry of Railway and Tsinghua University,China
文摘A high-speed comer detection algorithm based on fuzzy ID3 decision tree was proposed. In the algorithm, the Bresenham circle with 3-pixel radius was used as the test mask, overlapping the candidate comers with the nucleus. Connected pixels on the circle were applied to compare the intensity value with the nucleus, with the membership function used to give the fuzzy result. The pixel with maximum information gain was chosen as the parent node to build a binary decision tree. Thus, the comer detector was derived. The pictures taken in Fengtai Railway Station in Beijing were used to test the method. The experimental results show that when the number of pixels on the test mask is chosen to be 9, best result can be obtained. The comer detector significantly outperforms existing detector in computational efficiency without sacrificing the quality and the method also provides high performance against Poisson noise and Gaussian blur.
文摘Software developers endeavor to build their products with the least number of bugs.Despite this,many vulnerabilities are detected in software that threatens its integrity.Various automated software i.e.,vulnerability scanners,are available in the market which helps detect and manage vulnerabilities in a computer,application,or a network.Hence,the choice of an appropriate vulnerability scanner is crucial to ensure efficient vulnerability management.The current work serves a dual purpose,first,to identify the key factors which affect the vulnerability discovery process in a network.The second,is to rank the popular vulnerability scanners based on the identified attributes.This will aid the firm in determining the best scanner for them considering multiple aspects.The multi-criterion decision making based ranking approach has been discussed using the Intuitionistic Fuzzy set(IFS)and Technique for Order of Preference by Similarity to Ideal Solution(TOPSIS)to rank the various scanners.Using IFS TOPSIS,the opinion of a whole group could be simultaneously considered in the vulnerability scanner selection.In this study,five popular vulnerability scanners,namely,Nessus,Fsecure Radar,Greenbone,Qualys,and Nexpose have been considered.The inputs of industry specialists i.e.,people who deal in software security and vulnerability management process have been taken for the ranking process.Using the proposed methodology,a hierarchical classification of the various vulnerability scanners could be achieved.The clear enumeration of the steps allows for easy adaptability of the model to varied situations.This study will help product developers become aware of the needs of the market and design better scanners.And from the user’s point of view,it will help the system administrators in deciding which scanner to deploy depending on the company’s needs and preferences.The current work is the first to use a Multi Criterion Group Decision Making technique in vulnerability scanner selection.
文摘Generalized algorithms for solving problems of discrete, integer, and Boolean programming are discussed. These algorithms are associated with the method of normalized functions and are based on a combination of formal and heuristic procedures. This allows one to obtain quasi-optimal solutions after a small number of steps, overcoming the NP-completeness of discrete optimization problems. Questions of constructing so-called “duplicate” algorithms are considered to improve the quality of discrete problem solutions. An approach to solving discrete problems with fuzzy coefficients in objective functions and constraints on the basis of modifying the generalized algorithms is considered. Questions of applying the generalized algorithms to solve multicriteria discrete problems are also discussed. The results of the paper are of a universal character and can be applied to the design, planning, operation, and control of systems and processes of different purposes. The results of the paper are already being used to solve power engineering problems.
基金Supported by Science and Technology Plan Project of Guangdong Province (2009B010900026,2009CD058,2009CD078,2009CD079,2009CD080)Special Funds for Support Program of Development of Modern Information Service Industry of Guangdong Province(06120840B0370124)Funded Fund Project of South China Agricultural University (2007K017)~~
文摘Association rules and C4.5 rules can overcome the shortage of the traditional land evaluation methods and improve the intelligibility and efficiency of the land evaluation knowledge.In order to compare these two kinds of classification rules in the application,two fuzzy classifiers were established by combining with fuzzy decision algorithm especially based on Second General Soil Survey of Guangdong Province.The results of experiments demonstrated that the fuzzy classifier based on association rules obtain a higher accuracy rate,but with more complex calculation process and more computational overhead;the fuzzy classifier based on C4.5 rules obtain a slightly lower accuracy,but with fast computation and simpler calculation.