提出了一种改进的模糊聚类算法GBFC(Grid Based Fuzzy Clustering).在定义隶属度函数前先做网格划分,形成数据簇的基本形状,并提供真实的参数信息参与此后的隶属度函数定义.隶属度函数综合考虑了影响簇形状的因素,具有合理直观的几何意...提出了一种改进的模糊聚类算法GBFC(Grid Based Fuzzy Clustering).在定义隶属度函数前先做网格划分,形成数据簇的基本形状,并提供真实的参数信息参与此后的隶属度函数定义.隶属度函数综合考虑了影响簇形状的因素,具有合理直观的几何意义且形式简洁.算法通过网格划分加速聚类过程,通过模糊隶属度函数容忍噪声数据,克服了传统模糊聚类算法时间耗费量大的缺点.实验表明该算法具有良好的聚类性能.展开更多
文摘提出了一种改进的模糊聚类算法GBFC(Grid Based Fuzzy Clustering).在定义隶属度函数前先做网格划分,形成数据簇的基本形状,并提供真实的参数信息参与此后的隶属度函数定义.隶属度函数综合考虑了影响簇形状的因素,具有合理直观的几何意义且形式简洁.算法通过网格划分加速聚类过程,通过模糊隶属度函数容忍噪声数据,克服了传统模糊聚类算法时间耗费量大的缺点.实验表明该算法具有良好的聚类性能.