Electromyography(EMG)has already been broadly used in human-machine interaction(HMI)applications.Determining how to decode the information inside EMG signals robustly and accurately is a key problem for which we urgen...Electromyography(EMG)has already been broadly used in human-machine interaction(HMI)applications.Determining how to decode the information inside EMG signals robustly and accurately is a key problem for which we urgently need a solution.Recently,many EMG pattern recognition tasks have been addressed using deep learning methods.In this paper,we analyze recent papers and present a literature review describing the role that deep learning plays in EMG-based HMI.An overview of typical network structures and processing schemes will be provided.Recent progress in typical tasks such as movement classification,joint angle prediction,and force/torque estimation will be introduced.New issues,including multimodal sensing,inter-subject/inter-session,and robustness toward disturbances will be discussed.We attempt to provide a comprehensive analysis of current research by discussing the advantages,challenges,and opportunities brought by deep learning.We hope that deep learning can aid in eliminating factors that hinder the development of EMG-based HMI systems.Furthermore,possible future directions will be presented to pave the way for future research.展开更多
Speech recognition rate will deteriorate greatly in human-machine interaction when the speaker's speech mixes with a bystander's voice. This paper proposes a time-frequency approach for Blind Source Seperation...Speech recognition rate will deteriorate greatly in human-machine interaction when the speaker's speech mixes with a bystander's voice. This paper proposes a time-frequency approach for Blind Source Seperation (BSS) for intelligent Human-Machine Interaction(HMI). Main idea of the algorithm is to simultaneously diagonalize the correlation matrix of the pre-whitened signals at different time delays for every frequency bins in time-frequency domain. The prososed method has two merits: (1) fast convergence speed; (2) high signal to interference ratio of the separated signals. Numerical evaluations are used to compare the performance of the proposed algorithm with two other deconvolution algorithms. An efficient algorithm to resolve permutation ambiguity is also proposed in this paper. The algorithm proposed saves more than 10% of computational time with properly selected parameters and achieves good performances for both simulated convolutive mixtures and real room recorded speeches.展开更多
Teleoperation is of great importance in the area of robotics,especially when people are unavailable in the robot workshop.It provides a way for people to control robots remotely using human intelligence.In this paper,...Teleoperation is of great importance in the area of robotics,especially when people are unavailable in the robot workshop.It provides a way for people to control robots remotely using human intelligence.In this paper,a robotic teleoperation system for precise robotic manipulation is established.The data glove and the 7-degrees of freedom(DOFs)force feedback controller are used for the remote control interaction.The control system and the monitor system are designed for the remote precise manipulation.The monitor system contains an image acquisition system and a human-machine interaction module,and aims to simulate and detect the robot running state.Besides,a visual object tracking algorithm is developed to estimate the states of the dynamic system from noisy observations.The established robotic teleoperation systemis applied to a series of experiments,and high-precision results are obtained,showing the effectiveness of the physical system.展开更多
In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible t...In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible to unsafe events(such as falls)that can have disastrous consequences.However,automatically detecting falls fromvideo data is challenging,and automatic fall detection methods usually require large volumes of training data,which can be difficult to acquire.To address this problem,video kinematic data can be used as training data,thereby avoiding the requirement of creating a large fall data set.This study integrated an improved particle swarm optimization method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a costeffective and accurate fall detection system.First,it obtained an optical flow(OF)trajectory diagram from image sequences by using the OF method,and it solved problems related to focal length and object offset by employing the discrete Fourier transform(DFT)algorithm.Second,this study developed the D-IRFCMAC model,which combines spatial and temporal(recurrent)information.Third,it designed an IPSO(Improved Particle Swarm Optimization)algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller)model in the global search space.The proposed approach outperforms existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall,UP-Fall,and PRECIS HAR data sets.The UCF11 dataset had an average accuracy of 93.13%,whereas the UCF101 dataset had an average accuracy of 92.19%.The UR-Fall dataset had an accuracy of 100%,the UP-Fall dataset had an accuracy of 99.25%,and the PRECIS HAR dataset had an accuracy of 99.07%.展开更多
The fusion of VlSI (visual identity system Internet), digital maps and Web GIS is presented. Web GIS interface interactive design with VISI needs to consider more new factors. VISI can provide the design principle, ...The fusion of VlSI (visual identity system Internet), digital maps and Web GIS is presented. Web GIS interface interactive design with VISI needs to consider more new factors. VISI can provide the design principle, elements and contents for the Web GIS. The design of the Wuhan Bus Search System is fulfilled to confirm the validity and practicability of the fusion.展开更多
Background With an increasing number of vehicles becoming autonomous,intelligent,and connected,paying attention to the future usage of car human-machine interface with these vehicles should become more relevant.Severa...Background With an increasing number of vehicles becoming autonomous,intelligent,and connected,paying attention to the future usage of car human-machine interface with these vehicles should become more relevant.Several studies have addressed car HMI but were less attentive to designing and implementing interactive glazing for every day(autonomous)driving contexts.Methods Reflecting on the literature,we describe an engineering psychology practice and the design of six novel future user scenarios,which envision the application of a specific set of augmented reality(AR)support user interactions.Additionally,we conduct evaluations on specific scenarios and experiential prototypes,which reveal that these AR scenarios aid the target user groups in experiencing a new type of interaction.The overall evaluation is positive with valuable assessment results and suggestions.Conclusions This study can interest applied psychology educators who aspire to teach how AR can be operationalized in a human-centered design process to students with minimal pre-existing expertise or minimal scientific knowledge in engineering psychology.展开更多
A complete characterization of the behavior in human-robot interactions(HRI) includes both: the behavioral dynamics and the control laws that characterize how the behavior is regulated with the perception data. In thi...A complete characterization of the behavior in human-robot interactions(HRI) includes both: the behavioral dynamics and the control laws that characterize how the behavior is regulated with the perception data. In this way, this work proposes a leader-follower coordinate control based on an impedance control that allows to establish a dynamic relation between social forces and motion error. For this, a scheme is presented to identify the impedance based on fictitious social forces, which are described by distance-based potential fields.As part of the validation procedure, we present an experimental comparison to select the better of two different fictitious force structures. The criteria are determined by two qualities: least impedance errors during the validation procedure and least parameter variance during the recursive estimation procedure.Finally, with the best fictitious force and its identified impedance,an impedance control is designed for a mobile robot Pioneer 3AT,which is programmed to follow a human in a structured scenario.According to results, and under the hypothesis that moving like humans will be acceptable by humans, it is believed that the proposed control improves the social acceptance of the robot for this kind of interaction.展开更多
In human-machine interaction,robotic hands are useful in many scenarios.To operate robotic hands via gestures instead of handles will greatly improve the convenience and intuition of human-machine interaction.Here,we ...In human-machine interaction,robotic hands are useful in many scenarios.To operate robotic hands via gestures instead of handles will greatly improve the convenience and intuition of human-machine interaction.Here,we present a magnetic array assisted sliding triboelectric sensor for achieving a real-time gesture interaction between a human hand and robotic hand.With a finger’s traction movement of flexion or extension,the sensor can induce positive/negative pulse signals.Through counting the pulses in unit time,the degree,speed,and direction of finger motion can be judged in realtime.The magnetic array plays an important role in generating the quantifiable pulses.The designed two parts of magnetic array can transform sliding motion into contact-separation and constrain the sliding pathway,respectively,thus improve the durability,low speed signal amplitude,and stability of the system.This direct quantization approach and optimization of wearable gesture sensor provide a new strategy for achieving a natural,intuitive,and real-time human-robotic interaction.展开更多
In this paper, an interactive image enhancement (HE) technique based on fuzzy relaxation is presented, which allows the user to select different intensity levels for enhancement and intermit the enhancement process ...In this paper, an interactive image enhancement (HE) technique based on fuzzy relaxation is presented, which allows the user to select different intensity levels for enhancement and intermit the enhancement process according to his/her preference in applications. First, based on an analysis of the convergence of a fuzzy relaxation algorithm for image contrast enhancement, an improved version of this algorithm, which is called FuzzIIE Method 1, is suggested by deriving a relationship between the convergence regions and the parameters in the transformations defined in the algorithm. Then a method called FuzzIIE Method 2 is introduced by using a different fuzzy relaxation function, in which there is no need to re-select the parameter values for interactive image enhancement. Experimental results are presented demonstrating the enhancement capabilities of the proposed methods under different conditions.展开更多
This study aims to reflect the information coverage grey number and the interaction between attributes in grey relational decision making. Therefore, a multi-attribute decision method based on the grey information cov...This study aims to reflect the information coverage grey number and the interaction between attributes in grey relational decision making. Therefore, a multi-attribute decision method based on the grey information coverage interaction relational degree(GIRD) is proposed. Firstly, this paper defines the information coverage grey number, and establishes the GIRD model by using the Choquet fuzzy integral and grey relational principle. It proves that the proposed model not only is the general and unified form of the point relational degree, interval relational degree, mixed relational degree and grey fuzzy integral relational degree, but also can effectively deal with the interaction between attributes. Further,a decision making example of evaluating the industrial operation quality for 14 cities in Hunan province of China is provided to highlight the implementation, availability, and feasibility of the proposed decision model.展开更多
We propose a surrogate model-assisted algorithm by using a directed fuzzy graph to extract a user’s cognition on evaluated individuals in order to alleviate user fatigue in interactive genetic algorithms with an indi...We propose a surrogate model-assisted algorithm by using a directed fuzzy graph to extract a user’s cognition on evaluated individuals in order to alleviate user fatigue in interactive genetic algorithms with an individual’s fuzzy and stochastic fitness. We firstly present an approach to construct a directed fuzzy graph of an evolutionary population according to individuals’ dominance relations, cut-set levels and interval dominance probabilities, and then calculate an individual’s crisp fitness based on the out-degree and in-degree of the fuzzy graph. The approach to obtain training data is achieved using the fuzzy entropy of the evolutionary system to guarantee the credibilities of the samples which are used to train the surrogate model. We adopt a support vector regression machine as the surrogate model and train it using the sampled individuals and their crisp fitness. Then the surrogate model is optimized using the traditional genetic algorithm for some generations, and some good individuals are submitted to the user for the subsequent evolutions so as to guide and accelerate the evolution. Finally, we quantitatively analyze the performance of the presented algorithm in alleviating user fatigue and increasing more opportunities to find the satisfactory individuals, and also apply our algorithm to a fashion evolutionary design system to demonstrate its efficiency.展开更多
This paper studies the algorithm of the adaptive grid and fuzzy interacting multiple model (AGFIMM) for maneuvering target tracking, while focusing on the problems of the fixed structure multiple model (FSMM) algo...This paper studies the algorithm of the adaptive grid and fuzzy interacting multiple model (AGFIMM) for maneuvering target tracking, while focusing on the problems of the fixed structure multiple model (FSMM) algorithm's cost-efficiency ratio being not high and the Markov transition probability of the interacting multiple model (IMM) algorithm being difficult to determine exactly. This algorithm realizes the adaptive model set by adaptive grid adjustment, and obtains each model matching degree in the model set by fuzzy logic inference. The simulation results show that the AGFIMM algorithm can effectively improve the accuracy and cost-efficiency ratio of the multiple model algorithm, and as a result is suitable for enineering apolications.展开更多
A fast interactive segmentation algorithm of image-sequences based on relative fuzzy connectedness is presented. In comparison with the original algorithm, the proposed one, with the same accuracy, accelerates the seg...A fast interactive segmentation algorithm of image-sequences based on relative fuzzy connectedness is presented. In comparison with the original algorithm, the proposed one, with the same accuracy, accelerates the segmentation speed by three times for single image. Meanwhile, this fast segmentation algorithm is extended from single object to multiple objects and from single-image to image-sequences. Thus the segmentation of multiple objects from complex hackground and batch segmentation of image-sequences can be achieved. In addition, a post-processing scheme is incorporated in this algorithm, which extracts smooth edge with one-pixel-width for each segmented object. The experimental results illustrate that the proposed algorithm can obtain the object regions of interest from medical image or image-sequences as well as man-made images quickly and reliably with only a little interaction.展开更多
Multifunctional supramolecular ultra-tough bionic e-skin with unique durability for human–machine interaction in complex scenarios still remains challenging.Herein,we develop a skininspired ultra-tough e-skin with tu...Multifunctional supramolecular ultra-tough bionic e-skin with unique durability for human–machine interaction in complex scenarios still remains challenging.Herein,we develop a skininspired ultra-tough e-skin with tunable mechanical properties by a physical cross-linking salting-freezing-thawing method.The gelling agent(β-Glycerophosphate sodium:Gp)induces the aggregation and binding of PVA molecular chains and thereby toughens them(stress up to 5.79 MPa,toughness up to 13.96 MJ m^(−3)).Notably,due to molecular self-assembly,hydrogels can be fully recycled and reprocessed by direct heating(100°C for a few seconds),and the tensile strength can still be maintained at about 100%after six recoveries.The hydrogel integrates transparency(>60%),super toughness(up to 13.96 MJ m^(−3),bearing 1500 times of its own tensile weight),good antibacterial properties(E.coli and S.aureus),UV protection(Filtration:80%–90%),high electrical conductivity(4.72 S m^(−1)),anti-swelling and recyclability.The hydrogel can not only monitor daily physiological activities,but also be used for complex activities underwater and message encryption/decryption.We also used it to create a complete finger joint rehabilitation system with an interactive interface that dynamically presents the user’s health status.Our multifunctional electronic skin will have a profound impact on the future of new rehabilitation medical,human–machine interaction,VR/AR and the metaverse fields.展开更多
Hydrogel-based triboelectric nanoge nerator(TENG)has a promising applied prospect in wearable electronic devices.However,its low performance,poor stability,insufficient recyclability and inferior self-healing seriousl...Hydrogel-based triboelectric nanoge nerator(TENG)has a promising applied prospect in wearable electronic devices.However,its low performance,poor stability,insufficient recyclability and inferior self-healing seriously hinder its development.Herein,we report a robust route to a liquid metal(LM)/polyvinyl alcohol(PVA)hydrogel-based TENG(LP-TENG).Owing to the intrinsically liquid feature of conductive LM within the flexible PVA hydrogel,the as-prepared LP-TENG exhibited comprehensiye advantages of adaptability,biocompatibility,outstanding electrical performance,superior stability,recyclability and diverse applications,which were unattainable by traditional systems.Concretely,the LP-TENG delivered appealing open circuit voltage of 250 V,short circuit current of 4μA and transferred charge of 120 nC with high stability,outperforming most advanced TENG systems.The LP-TENG was successfully employed for versatile applications with multifunctionality,including human motion detection,handwriting recognition,energy collection,message transmission and human-machine interaction.This work presents significant prospects for crafting advanced materials and devices in the fields of wearable electronics,flexible skin and smart robots.展开更多
This paper considers two-level integer programming problems involving random fuzzy variables with cooperative behavior of the decision makers. Considering the probabilities that the decision makers’ objective functio...This paper considers two-level integer programming problems involving random fuzzy variables with cooperative behavior of the decision makers. Considering the probabilities that the decision makers’ objective function values are smaller than or equal to target variables, fuzzy goals of the decision makers are introduced. Using the fractile criteria to optimize the target variables under the condition that the degrees of possibility with respect to the attained probabilities are greater than or equal to certain permissible levels, the original random fuzzy two-level integer programming problems are reduced to deterministic ones. Through the introduction of genetic algorithms with double strings for nonlinear integer programming problems, interactive fuzzy programming to derive a satisfactory solution for the decision maker at the upper level in consideration of the cooperative relation between decision makers is presented. An illustrative numerical example demonstrates the feasibility and efficiency of the proposed method.展开更多
This paper considers multiobjective integer programming problems involving random variables in constraints. Using the concept of simple recourse, the formulated multiobjective stochastic simple recourse problems are t...This paper considers multiobjective integer programming problems involving random variables in constraints. Using the concept of simple recourse, the formulated multiobjective stochastic simple recourse problems are transformed into deterministic ones. For solving transformed deterministic problems efficiently, we also introduce genetic algorithms with double strings for nonlinear integer programming problems. Taking into account vagueness of judgments of the decision maker, an interactive fuzzy satisficing method is presented. In the proposed interactive method, after determineing the fuzzy goals of the decision maker, a satisficing solution for the decision maker is derived efficiently by updating the reference membership levels of the decision maker. An illustrative numerical example is provided to demonstrate the feasibility and efficiency of the proposed method.展开更多
In this article I will address the issue of the meaning of Embodied Artificial Intelligence(EAI)as it is configured today.My starting point is the refined interactive perspective on the semantics of EAI,as was recentl...In this article I will address the issue of the meaning of Embodied Artificial Intelligence(EAI)as it is configured today.My starting point is the refined interactive perspective on the semantics of EAI,as was recently suggested by Froese and colleagues.This perspective rests on the assumption that the concept of human bodily subjectivity must be extended to include meaning-making processes,which are enabled by advanced AI systems that may be incorporated in the human biological body.After having clarified the technical background,I will introduce the genetic component of the phenomenological method as a suitable tool to face the aforementioned issue.Towards this end,I will place the genetic method in the context of the so-called New Human-Machine Interaction(New HMI).I will further outline a genetic phenomenology of visual embodiment,suggesting a futuristic application based on the thesis of the“technological supplementation of phenomenological methodology”through the synthetic method.The case at stake is that of patients with a severe clinical picture characterised by the loss of corneal function,who in the near future could be treated with synthetic corneal prosthetic implants produced by a 3D bio-printing process by using an advanced EAI technique.I will conclude this article with a brief review of the main problems that still remain open.展开更多
According to the requirements of real-time performance and reliability in underwater maneuvering target tracking as well as clarifying motion features of the underwater target, an interacting multiple model algorithm ...According to the requirements of real-time performance and reliability in underwater maneuvering target tracking as well as clarifying motion features of the underwater target, an interacting multiple model algorithm based on fuzzy logic inference (FIMM) is proposed. Maneuvering patterns of the target are represented by model sets, including the constant velocity model (CA), the Singer mode~, and the nearly constant speed horizontal-turn model (HT) in FIMM technology. The simulation results show that compared to conventional IMM, the reliability and real-time performance of underwater target tracking can be improved by FIMM algorithm.展开更多
Exoskeleton robots and their control methods have been extensively developed to aid post-stroke rehabilitation. Most of the existing methods using linear controllers are designed for position control and are not suita...Exoskeleton robots and their control methods have been extensively developed to aid post-stroke rehabilitation. Most of the existing methods using linear controllers are designed for position control and are not suitable for human-machine interaction(HMI) force control, as the interaction system between the human body and exoskeleton is uncertain and nonlinear. We present an approach for HMI force control via model reference adaptive impedance control(MRAIC) to solve this problem in case of index finger exoskeleton control. First, a dynamic HMI model, which is based on a position control inner loop, is formulated. Second, the theoretical MRAC framework is implemented in the control system. Then, the adaptive controllers are designed according to the Lyapunov stability theory. To verify the performance of the proposed method, we compare it with a proportional-integral-derivative(PID) method in the time domain with real experiments and in the frequency domain with simulations. The results illustrate the effectiveness and robustness of the proposed method in solving the nonlinear HMI force control problem in hand exoskeleton.展开更多
基金supported in part by the National Natural Science Foundation of China(U181321461773369+2 种基金61903360)the Selfplanned Project of the State Key Laboratory of Robotics(2020-Z12)China Postdoctoral Science Foundation funded project(2019M661155)。
文摘Electromyography(EMG)has already been broadly used in human-machine interaction(HMI)applications.Determining how to decode the information inside EMG signals robustly and accurately is a key problem for which we urgently need a solution.Recently,many EMG pattern recognition tasks have been addressed using deep learning methods.In this paper,we analyze recent papers and present a literature review describing the role that deep learning plays in EMG-based HMI.An overview of typical network structures and processing schemes will be provided.Recent progress in typical tasks such as movement classification,joint angle prediction,and force/torque estimation will be introduced.New issues,including multimodal sensing,inter-subject/inter-session,and robustness toward disturbances will be discussed.We attempt to provide a comprehensive analysis of current research by discussing the advantages,challenges,and opportunities brought by deep learning.We hope that deep learning can aid in eliminating factors that hinder the development of EMG-based HMI systems.Furthermore,possible future directions will be presented to pave the way for future research.
文摘Speech recognition rate will deteriorate greatly in human-machine interaction when the speaker's speech mixes with a bystander's voice. This paper proposes a time-frequency approach for Blind Source Seperation (BSS) for intelligent Human-Machine Interaction(HMI). Main idea of the algorithm is to simultaneously diagonalize the correlation matrix of the pre-whitened signals at different time delays for every frequency bins in time-frequency domain. The prososed method has two merits: (1) fast convergence speed; (2) high signal to interference ratio of the separated signals. Numerical evaluations are used to compare the performance of the proposed algorithm with two other deconvolution algorithms. An efficient algorithm to resolve permutation ambiguity is also proposed in this paper. The algorithm proposed saves more than 10% of computational time with properly selected parameters and achieves good performances for both simulated convolutive mixtures and real room recorded speeches.
基金NSFC-Shenzhen Robotics Research Center Project(No.U2013207)the Beijing Science and Technology Plan Project(No.Z191100008019008)。
文摘Teleoperation is of great importance in the area of robotics,especially when people are unavailable in the robot workshop.It provides a way for people to control robots remotely using human intelligence.In this paper,a robotic teleoperation system for precise robotic manipulation is established.The data glove and the 7-degrees of freedom(DOFs)force feedback controller are used for the remote control interaction.The control system and the monitor system are designed for the remote precise manipulation.The monitor system contains an image acquisition system and a human-machine interaction module,and aims to simulate and detect the robot running state.Besides,a visual object tracking algorithm is developed to estimate the states of the dynamic system from noisy observations.The established robotic teleoperation systemis applied to a series of experiments,and high-precision results are obtained,showing the effectiveness of the physical system.
基金supported by the National Science and Technology Council under grants NSTC 112-2221-E-320-002the Buddhist Tzu Chi Medical Foundation in Taiwan under Grant TCMMP 112-02-02.
文摘In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible to unsafe events(such as falls)that can have disastrous consequences.However,automatically detecting falls fromvideo data is challenging,and automatic fall detection methods usually require large volumes of training data,which can be difficult to acquire.To address this problem,video kinematic data can be used as training data,thereby avoiding the requirement of creating a large fall data set.This study integrated an improved particle swarm optimization method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a costeffective and accurate fall detection system.First,it obtained an optical flow(OF)trajectory diagram from image sequences by using the OF method,and it solved problems related to focal length and object offset by employing the discrete Fourier transform(DFT)algorithm.Second,this study developed the D-IRFCMAC model,which combines spatial and temporal(recurrent)information.Third,it designed an IPSO(Improved Particle Swarm Optimization)algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller)model in the global search space.The proposed approach outperforms existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall,UP-Fall,and PRECIS HAR data sets.The UCF11 dataset had an average accuracy of 93.13%,whereas the UCF101 dataset had an average accuracy of 92.19%.The UR-Fall dataset had an accuracy of 100%,the UP-Fall dataset had an accuracy of 99.25%,and the PRECIS HAR dataset had an accuracy of 99.07%.
基金Supported by the National Natural Science Foundation of China (No. 40071071).
文摘The fusion of VlSI (visual identity system Internet), digital maps and Web GIS is presented. Web GIS interface interactive design with VISI needs to consider more new factors. VISI can provide the design principle, elements and contents for the Web GIS. The design of the Wuhan Bus Search System is fulfilled to confirm the validity and practicability of the fusion.
基金Supported by the‘Automotive Glazing Application in Intelligent Cockpit Human-Machine Interface’project(SKHX2021049)a collaboration between the Saint-Go Bain Research and the Beijing Normal University。
文摘Background With an increasing number of vehicles becoming autonomous,intelligent,and connected,paying attention to the future usage of car human-machine interface with these vehicles should become more relevant.Several studies have addressed car HMI but were less attentive to designing and implementing interactive glazing for every day(autonomous)driving contexts.Methods Reflecting on the literature,we describe an engineering psychology practice and the design of six novel future user scenarios,which envision the application of a specific set of augmented reality(AR)support user interactions.Additionally,we conduct evaluations on specific scenarios and experiential prototypes,which reveal that these AR scenarios aid the target user groups in experiencing a new type of interaction.The overall evaluation is positive with valuable assessment results and suggestions.Conclusions This study can interest applied psychology educators who aspire to teach how AR can be operationalized in a human-centered design process to students with minimal pre-existing expertise or minimal scientific knowledge in engineering psychology.
文摘A complete characterization of the behavior in human-robot interactions(HRI) includes both: the behavioral dynamics and the control laws that characterize how the behavior is regulated with the perception data. In this way, this work proposes a leader-follower coordinate control based on an impedance control that allows to establish a dynamic relation between social forces and motion error. For this, a scheme is presented to identify the impedance based on fictitious social forces, which are described by distance-based potential fields.As part of the validation procedure, we present an experimental comparison to select the better of two different fictitious force structures. The criteria are determined by two qualities: least impedance errors during the validation procedure and least parameter variance during the recursive estimation procedure.Finally, with the best fictitious force and its identified impedance,an impedance control is designed for a mobile robot Pioneer 3AT,which is programmed to follow a human in a structured scenario.According to results, and under the hypothesis that moving like humans will be acceptable by humans, it is believed that the proposed control improves the social acceptance of the robot for this kind of interaction.
基金This work was supported by National Natural Science Foundation of China(51902035 and 52073037)Natural Science Foundation of Chongqing(cstc2020jcyj-msxmX0807)+1 种基金the Fundamental Research Funds for the Central Universities(2020CDJ-LHSS-001 and 2019CDXZWL001)Chongqing graduate tutor team construction project(ydstd1832).
文摘In human-machine interaction,robotic hands are useful in many scenarios.To operate robotic hands via gestures instead of handles will greatly improve the convenience and intuition of human-machine interaction.Here,we present a magnetic array assisted sliding triboelectric sensor for achieving a real-time gesture interaction between a human hand and robotic hand.With a finger’s traction movement of flexion or extension,the sensor can induce positive/negative pulse signals.Through counting the pulses in unit time,the degree,speed,and direction of finger motion can be judged in realtime.The magnetic array plays an important role in generating the quantifiable pulses.The designed two parts of magnetic array can transform sliding motion into contact-separation and constrain the sliding pathway,respectively,thus improve the durability,low speed signal amplitude,and stability of the system.This direct quantization approach and optimization of wearable gesture sensor provide a new strategy for achieving a natural,intuitive,and real-time human-robotic interaction.
文摘In this paper, an interactive image enhancement (HE) technique based on fuzzy relaxation is presented, which allows the user to select different intensity levels for enhancement and intermit the enhancement process according to his/her preference in applications. First, based on an analysis of the convergence of a fuzzy relaxation algorithm for image contrast enhancement, an improved version of this algorithm, which is called FuzzIIE Method 1, is suggested by deriving a relationship between the convergence regions and the parameters in the transformations defined in the algorithm. Then a method called FuzzIIE Method 2 is introduced by using a different fuzzy relaxation function, in which there is no need to re-select the parameter values for interactive image enhancement. Experimental results are presented demonstrating the enhancement capabilities of the proposed methods under different conditions.
基金supported by the National Natural Science Foundation of China(71871174,71571065,71671135)the National Social Science Fund of China(13FGL005)。
文摘This study aims to reflect the information coverage grey number and the interaction between attributes in grey relational decision making. Therefore, a multi-attribute decision method based on the grey information coverage interaction relational degree(GIRD) is proposed. Firstly, this paper defines the information coverage grey number, and establishes the GIRD model by using the Choquet fuzzy integral and grey relational principle. It proves that the proposed model not only is the general and unified form of the point relational degree, interval relational degree, mixed relational degree and grey fuzzy integral relational degree, but also can effectively deal with the interaction between attributes. Further,a decision making example of evaluating the industrial operation quality for 14 cities in Hunan province of China is provided to highlight the implementation, availability, and feasibility of the proposed decision model.
基金supported by National Natural Science Foundation of China (No.60775044)the Program for New Century Excellent Talentsin University (No.NCET-07-0802)
文摘We propose a surrogate model-assisted algorithm by using a directed fuzzy graph to extract a user’s cognition on evaluated individuals in order to alleviate user fatigue in interactive genetic algorithms with an individual’s fuzzy and stochastic fitness. We firstly present an approach to construct a directed fuzzy graph of an evolutionary population according to individuals’ dominance relations, cut-set levels and interval dominance probabilities, and then calculate an individual’s crisp fitness based on the out-degree and in-degree of the fuzzy graph. The approach to obtain training data is achieved using the fuzzy entropy of the evolutionary system to guarantee the credibilities of the samples which are used to train the surrogate model. We adopt a support vector regression machine as the surrogate model and train it using the sampled individuals and their crisp fitness. Then the surrogate model is optimized using the traditional genetic algorithm for some generations, and some good individuals are submitted to the user for the subsequent evolutions so as to guide and accelerate the evolution. Finally, we quantitatively analyze the performance of the presented algorithm in alleviating user fatigue and increasing more opportunities to find the satisfactory individuals, and also apply our algorithm to a fashion evolutionary design system to demonstrate its efficiency.
基金Foundation item: Supported by the National Nature Science Foundation of China (No. 61074053, 61374114) and the Applied Basic Research Program of Ministry of Transport of China (No. 2011-329-225 -390).
文摘This paper studies the algorithm of the adaptive grid and fuzzy interacting multiple model (AGFIMM) for maneuvering target tracking, while focusing on the problems of the fixed structure multiple model (FSMM) algorithm's cost-efficiency ratio being not high and the Markov transition probability of the interacting multiple model (IMM) algorithm being difficult to determine exactly. This algorithm realizes the adaptive model set by adaptive grid adjustment, and obtains each model matching degree in the model set by fuzzy logic inference. The simulation results show that the AGFIMM algorithm can effectively improve the accuracy and cost-efficiency ratio of the multiple model algorithm, and as a result is suitable for enineering apolications.
文摘A fast interactive segmentation algorithm of image-sequences based on relative fuzzy connectedness is presented. In comparison with the original algorithm, the proposed one, with the same accuracy, accelerates the segmentation speed by three times for single image. Meanwhile, this fast segmentation algorithm is extended from single object to multiple objects and from single-image to image-sequences. Thus the segmentation of multiple objects from complex hackground and batch segmentation of image-sequences can be achieved. In addition, a post-processing scheme is incorporated in this algorithm, which extracts smooth edge with one-pixel-width for each segmented object. The experimental results illustrate that the proposed algorithm can obtain the object regions of interest from medical image or image-sequences as well as man-made images quickly and reliably with only a little interaction.
基金support from the National Natural Science Foundation of China(32201179)Guangdong Basic and Applied Basic Research Foundation(2020A1515110126 and 2021A1515010130)the Fundamental Research Funds for the Central Universities(N2119006 and N2224001-10)is gratefully acknowledged.
文摘Multifunctional supramolecular ultra-tough bionic e-skin with unique durability for human–machine interaction in complex scenarios still remains challenging.Herein,we develop a skininspired ultra-tough e-skin with tunable mechanical properties by a physical cross-linking salting-freezing-thawing method.The gelling agent(β-Glycerophosphate sodium:Gp)induces the aggregation and binding of PVA molecular chains and thereby toughens them(stress up to 5.79 MPa,toughness up to 13.96 MJ m^(−3)).Notably,due to molecular self-assembly,hydrogels can be fully recycled and reprocessed by direct heating(100°C for a few seconds),and the tensile strength can still be maintained at about 100%after six recoveries.The hydrogel integrates transparency(>60%),super toughness(up to 13.96 MJ m^(−3),bearing 1500 times of its own tensile weight),good antibacterial properties(E.coli and S.aureus),UV protection(Filtration:80%–90%),high electrical conductivity(4.72 S m^(−1)),anti-swelling and recyclability.The hydrogel can not only monitor daily physiological activities,but also be used for complex activities underwater and message encryption/decryption.We also used it to create a complete finger joint rehabilitation system with an interactive interface that dynamically presents the user’s health status.Our multifunctional electronic skin will have a profound impact on the future of new rehabilitation medical,human–machine interaction,VR/AR and the metaverse fields.
基金financially supported by the Natural Science Foundation of China(Nos.22109120,62104170 and 82202757)Zhejiang Provincial Natural Science Foundation of China(Nos.LQ21B030002 and LY23F040001)。
文摘Hydrogel-based triboelectric nanoge nerator(TENG)has a promising applied prospect in wearable electronic devices.However,its low performance,poor stability,insufficient recyclability and inferior self-healing seriously hinder its development.Herein,we report a robust route to a liquid metal(LM)/polyvinyl alcohol(PVA)hydrogel-based TENG(LP-TENG).Owing to the intrinsically liquid feature of conductive LM within the flexible PVA hydrogel,the as-prepared LP-TENG exhibited comprehensiye advantages of adaptability,biocompatibility,outstanding electrical performance,superior stability,recyclability and diverse applications,which were unattainable by traditional systems.Concretely,the LP-TENG delivered appealing open circuit voltage of 250 V,short circuit current of 4μA and transferred charge of 120 nC with high stability,outperforming most advanced TENG systems.The LP-TENG was successfully employed for versatile applications with multifunctionality,including human motion detection,handwriting recognition,energy collection,message transmission and human-machine interaction.This work presents significant prospects for crafting advanced materials and devices in the fields of wearable electronics,flexible skin and smart robots.
文摘This paper considers two-level integer programming problems involving random fuzzy variables with cooperative behavior of the decision makers. Considering the probabilities that the decision makers’ objective function values are smaller than or equal to target variables, fuzzy goals of the decision makers are introduced. Using the fractile criteria to optimize the target variables under the condition that the degrees of possibility with respect to the attained probabilities are greater than or equal to certain permissible levels, the original random fuzzy two-level integer programming problems are reduced to deterministic ones. Through the introduction of genetic algorithms with double strings for nonlinear integer programming problems, interactive fuzzy programming to derive a satisfactory solution for the decision maker at the upper level in consideration of the cooperative relation between decision makers is presented. An illustrative numerical example demonstrates the feasibility and efficiency of the proposed method.
文摘This paper considers multiobjective integer programming problems involving random variables in constraints. Using the concept of simple recourse, the formulated multiobjective stochastic simple recourse problems are transformed into deterministic ones. For solving transformed deterministic problems efficiently, we also introduce genetic algorithms with double strings for nonlinear integer programming problems. Taking into account vagueness of judgments of the decision maker, an interactive fuzzy satisficing method is presented. In the proposed interactive method, after determineing the fuzzy goals of the decision maker, a satisficing solution for the decision maker is derived efficiently by updating the reference membership levels of the decision maker. An illustrative numerical example is provided to demonstrate the feasibility and efficiency of the proposed method.
文摘In this article I will address the issue of the meaning of Embodied Artificial Intelligence(EAI)as it is configured today.My starting point is the refined interactive perspective on the semantics of EAI,as was recently suggested by Froese and colleagues.This perspective rests on the assumption that the concept of human bodily subjectivity must be extended to include meaning-making processes,which are enabled by advanced AI systems that may be incorporated in the human biological body.After having clarified the technical background,I will introduce the genetic component of the phenomenological method as a suitable tool to face the aforementioned issue.Towards this end,I will place the genetic method in the context of the so-called New Human-Machine Interaction(New HMI).I will further outline a genetic phenomenology of visual embodiment,suggesting a futuristic application based on the thesis of the“technological supplementation of phenomenological methodology”through the synthetic method.The case at stake is that of patients with a severe clinical picture characterised by the loss of corneal function,who in the near future could be treated with synthetic corneal prosthetic implants produced by a 3D bio-printing process by using an advanced EAI technique.I will conclude this article with a brief review of the main problems that still remain open.
基金Supported by the National Natural Science Foundation of China (No.40067116), the Research Development Foundation of Dalian Naval Academy (No.K200821).
文摘According to the requirements of real-time performance and reliability in underwater maneuvering target tracking as well as clarifying motion features of the underwater target, an interacting multiple model algorithm based on fuzzy logic inference (FIMM) is proposed. Maneuvering patterns of the target are represented by model sets, including the constant velocity model (CA), the Singer mode~, and the nearly constant speed horizontal-turn model (HT) in FIMM technology. The simulation results show that compared to conventional IMM, the reliability and real-time performance of underwater target tracking can be improved by FIMM algorithm.
基金Project supported by the National Natural Science Foundation of China(No.51221004)
文摘Exoskeleton robots and their control methods have been extensively developed to aid post-stroke rehabilitation. Most of the existing methods using linear controllers are designed for position control and are not suitable for human-machine interaction(HMI) force control, as the interaction system between the human body and exoskeleton is uncertain and nonlinear. We present an approach for HMI force control via model reference adaptive impedance control(MRAIC) to solve this problem in case of index finger exoskeleton control. First, a dynamic HMI model, which is based on a position control inner loop, is formulated. Second, the theoretical MRAC framework is implemented in the control system. Then, the adaptive controllers are designed according to the Lyapunov stability theory. To verify the performance of the proposed method, we compare it with a proportional-integral-derivative(PID) method in the time domain with real experiments and in the frequency domain with simulations. The results illustrate the effectiveness and robustness of the proposed method in solving the nonlinear HMI force control problem in hand exoskeleton.