Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship ...Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship between data attributes.However,the creation of fuzzy rules typically depends on expert knowledge,which may not fully leverage the label information in training data and may be subjective.To address this issue,a novel fuzzy rule oversampling approach is developed based on the learning vector quantization(LVQ)algorithm.In this method,the label information of the training data is utilized to determine the antecedent part of If-Then fuzzy rules by dynamically dividing attribute intervals using LVQ.Subsequently,fuzzy rules are generated and adjusted to calculate rule weights.The number of new samples to be synthesized for each rule is then computed,and samples from the minority class are synthesized based on the newly generated fuzzy rules.This results in the establishment of a fuzzy rule oversampling method based on LVQ.To evaluate the effectiveness of this method,comparative experiments are conducted on 12 publicly available imbalance datasets with five other sampling techniques in combination with the support function machine.The experimental results demonstrate that the proposed method can significantly enhance the classification algorithm across seven performance indicators,including a boost of 2.15%to 12.34%in Accuracy,6.11%to 27.06%in G-mean,and 4.69%to 18.78%in AUC.These show that the proposed method is capable of more efficiently improving the classification performance of imbalanced data.展开更多
As per World Health Organization report which was released in the year of 2019,Diabetes claimed the lives of approximately 1.5 million individuals globally in 2019 and around 450 million people are affected by diabete...As per World Health Organization report which was released in the year of 2019,Diabetes claimed the lives of approximately 1.5 million individuals globally in 2019 and around 450 million people are affected by diabetes all over the world.Hence it is inferred that diabetes is rampant across the world with the majority of the world population being affected by it.Among the diabetics,it can be observed that a large number of people had failed to identify their disease in the initial stage itself and hence the disease level moved from Type-1 to Type-2.To avoid this situation,we propose a new fuzzy logic based neural classifier for early detection of diabetes.A set of new neuro-fuzzy rules is introduced with time constraints that are applied for thefirst level classification.These levels are further refined by using the Fuzzy Cognitive Maps(FCM)with time intervals for making thefinal decision over the classification process.The main objective of this proposed model is to detect the diabetes level based on the time.Also,the set of neuro-fuzzy rules are used for selecting the most contributing values over the decision-making process in diabetes prediction.The proposed model proved its efficiency in performance after experiments conducted not only from the repository but also by using the standard diabetic detection models that are available in the market.展开更多
Breast cancer remains a significant global health challenge, necessitating effective early detection and prognosis to enhance patient outcomes. Current diagnostic methods, including mammography and MRI, suffer from li...Breast cancer remains a significant global health challenge, necessitating effective early detection and prognosis to enhance patient outcomes. Current diagnostic methods, including mammography and MRI, suffer from limitations such as uncertainty and imprecise data, leading to late-stage diagnoses. To address this, various expert systems have been developed, but many rely on type-1 fuzzy logic and lack mobile-based applications for data collection and feedback to healthcare practitioners. This research investigates the development of an Enhanced Mobile-based Fuzzy Expert system (EMFES) for breast cancer pre-growth prognosis. The study explores the use of type-2 fuzzy logic to enhance accuracy and model uncertainty effectively. Additionally, it evaluates the advantages of employing the python programming language over java for implementation and considers specific risk factors for data collection. The research aims to dynamically generate fuzzy rules, adapting to evolving breast cancer research and patient data. Key research questions focus on the comparative effectiveness of type-2 fuzzy logic, the handling of uncertainty and imprecise data, the integration of mobile-based features, the choice of programming language, and the creation of dynamic fuzzy rules. Furthermore, the study examines the differences between the Mamdani Inference System and the Sugeno Fuzzy Inference method and explores challenges and opportunities in deploying the EMFES on mobile devices. The research identifies a critical gap in existing breast cancer diagnostic systems, emphasizing the need for a comprehensive, mobile-enabled, and adaptable solution by developing an EMFES that leverages Type-2 fuzzy logic, the Sugeno Inference Algorithm, Python Programming, and dynamic fuzzy rule generation. This study seeks to enhance early breast cancer detection and ultimately reduce breast cancer-related mortality.展开更多
Lubricant diagnosis serves as a crucial accordance for condition-based maintenance(CBM)involving oil changing and wear examination of critical parts in equipment.However,the accuracy of traditional end-to-end diagnosi...Lubricant diagnosis serves as a crucial accordance for condition-based maintenance(CBM)involving oil changing and wear examination of critical parts in equipment.However,the accuracy of traditional end-to-end diagnosis models is often limited by the inconsistency and random fluctuations in multiple monitoring indicators.To address this,an attribute-driven adaptive diagnosis method is developed,involving three attributes:physicochemical,contamination,and wear.Correspondingly,a fuzzy fault tree(termed FFT)-based model is constructed containing the logic correlations from monitoring indicators to attributes and to lubricant failures.In particular,inference rules are integrated to mitigate conflicts arising from the reverse degradation of multiple indicators.With this model,the lubricant conditions can be accurately assessed through rule-based reasoning.Furthermore,to enhance its intelligence,the model is dynamically optimized with lubricant analysis knowledge and monitoring data.For verification,the developed model is tested with lubricant samples from both the fatigue experiment and actual aero-engines.Fatigue experiments reveal that the proposed model can improve the lubricant diagnosis accuracy from 73.4%to 92.6%compared with the existing methods.While for the engine lubricant test,a high accuracy of 90%was achieved.展开更多
To deal with the problem that arises when the conventional fuzzy class-association method applies repetitive scans of the classifier to classify new texts,which has low efficiency, a new approach based on the FCR-tree...To deal with the problem that arises when the conventional fuzzy class-association method applies repetitive scans of the classifier to classify new texts,which has low efficiency, a new approach based on the FCR-tree(fuzzy classification rules tree)for text categorization is proposed.The compactness of the FCR-tree saves significant space in storing a large set of rules when there are many repeated words in the rules.In comparison with classification rules,the fuzzy classification rules contain not only words,but also the fuzzy sets corresponding to the frequencies of words appearing in texts.Therefore,the construction of an FCR-tree and its structure are different from a CR-tree.To debase the difficulty of FCR-tree construction and rules retrieval,more k-FCR-trees are built.When classifying a new text,it is not necessary to search the paths of the sub-trees led by those words not appearing in this text,thus reducing the number of traveling rules.Experimental results show that the proposed approach obviously outperforms the conventional method in efficiency.展开更多
By the analysis of CORBA technology, distributed technology, multi agent, fuzzy cluster, OA system, expert system and decision support technology, a distributed OA expert system model based on fuzzy rules (DOAES) is ...By the analysis of CORBA technology, distributed technology, multi agent, fuzzy cluster, OA system, expert system and decision support technology, a distributed OA expert system model based on fuzzy rules (DOAES) is proposed. In DOAES, the knowledge and experience of decision makers are processed and transferred into the knowledge base. So the system has the adaptive ability and re study function and the decision results are more scientific and more objective. The DOAES is successfully applied in the management system of invest promotion.展开更多
There are defects such as the low convergence rate and premature phenomenon on the performance of simple genetic algorithms (SGA) as the values of crossover probability (Pc) and mutation probability (Pro) are fi...There are defects such as the low convergence rate and premature phenomenon on the performance of simple genetic algorithms (SGA) as the values of crossover probability (Pc) and mutation probability (Pro) are fixed. To solve the problems, the fuzzy control method and the genetic algorithms were systematically integrated to create a kind of improved fuzzy adaptive genetic algorithm (FAGA) based on the auto-regulating fuzzy rules (ARFR-FAGA). By using the fuzzy control method, the values of Pc and Pm were adjusted according to the evolutional process, and the fuzzy rules were optimized by another genetic algorithm. Experimental results in solving the function optimization problems demonstrate that the convergence rate and solution quality of ARFR-FAGA exceed those of SGA, AGA and fuzzy adaptive genetic algorithm based on expertise (EFAGA) obviously in the global search.展开更多
In metal cutting industry it is a common practice to search for optimal combination of cutting parameters in order to maximize the tool life for a fixed minimum value of material removal rate(MRR). After the advent ...In metal cutting industry it is a common practice to search for optimal combination of cutting parameters in order to maximize the tool life for a fixed minimum value of material removal rate(MRR). After the advent of high-speed milling(HSM) pro cess, lots of experimental and theoretical researches have been done for this purpose which mainly emphasized on the optimization of the cutting parameters. It is highly beneficial to convert raw data into a comprehensive knowledge-based expert system using fuzzy logic as the reasoning mechanism. In this paper an attempt has been presented for the extraction of the rules from fuzzy neural network(FNN) so as to have the most effective knowledge-base for given set of data. Experiments were conducted to determine the best values of cutting speeds that can maximize tool life for different combinations of input parameters. A fuzzy neural network was constructed based on the fuzzification of input parameters and the cutting speed. After training process, raw rule sets were extracted and a rule pruning approach was proposed to obtain concise linguistic rules. The estimation process with fuzzy inference showed that the optimized combination of fuzzy rules provided the estimation error of only 6.34 m/min as compared to 314 m/min of that of randomized combination of rule s.展开更多
Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper descri...Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper describes an improved SPSA algorithm, which entails fuzzy adaptive gain sequences, gradient smoothing, and a step rejection procedure to enhance convergence and stability. The proposed fuzzy adaptive simultaneous perturbation approximation (FASPA) algorithm is particularly well suited to problems involving a large number of parameters such as those encountered in nonlinear system identification using neural networks (NNs). Accordingly, a multilayer perceptron (MLP) network with popular training algorithms was used to predicate the system response. We found that an MLP trained by FASPSA had the desired accuracy that was comparable to results obtained by traditional system identification algorithms. Simulation results for typical nonlinear systems demonstrate that the proposed NN architecture trained with FASPSA yields improved system identification as measured by reduced time of convergence and a smaller identification error.展开更多
Data-mining techniques have been developed to turn data into useful task-oriented knowledge. Most algorithms for mining association rules identify relationships among transactions using binary values and find rules at...Data-mining techniques have been developed to turn data into useful task-oriented knowledge. Most algorithms for mining association rules identify relationships among transactions using binary values and find rules at a single-concept level. Extracting multilevel association rules in transaction databases is most commonly used in data mining. This paper proposes a multilevel fuzzy association rule mining model for extraction of implicit knowledge which stored as quantitative values in transactions. For this reason it uses different support value at each level as well as different membership function for each item. By integrating fuzzy-set concepts, data-mining technologies and multiple-level taxonomy, our method finds fuzzy association rules from transaction data sets. This approach adopts a top-down progressively deepening approach to derive large itemsets and also incorporates fuzzy boundaries instead of sharp boundary intervals. Comparing our method with previous ones in simulation shows that the proposed method maintains higher precision, the mined rules are closer to reality, and it gives ability to mine association rules at different levels based on the user’s tendency as well.展开更多
Estimating the intention of space objects plays an important role in air-craft design,aviation safety,military and otherfields,and is an important refer-ence basis for air situation analysis and command decision-making...Estimating the intention of space objects plays an important role in air-craft design,aviation safety,military and otherfields,and is an important refer-ence basis for air situation analysis and command decision-making.This paper studies an intention estimation method based on fuzzy theory,combining prob-ability to calculate the intention between two objects.This method takes a space object as the origin of coordinates,observes the target’s distance,speed,relative heading angle,altitude difference,steering trend and etc.,then introduces the spe-cific calculation methods of these parameters.Through calculation,values are input into the fuzzy inference model,andfinally the action intention of the target is obtained through the fuzzy rule table and historical weighted probability.Ver-ified by simulation experiment,the target intention inferred by this method is roughly the same as the actual behavior of the target,which proves that the meth-od for identifying the target intention is effective.展开更多
At present, most of the association rules algorithms are based on the Boolean attribute and single-level association rules mining. But data of the real world has various types, the multi-level and quantitative attribu...At present, most of the association rules algorithms are based on the Boolean attribute and single-level association rules mining. But data of the real world has various types, the multi-level and quantitative attributes are got more and more attention. And the most important step is to mine frequent sets. In this paper, we propose an algorithm that is called fuzzy multiple-level association (FMA) rules to mine frequent sets. It is based on the improved Eclat algorithm that is different to many researchers’ proposed algorithms thatused the Apriori algorithm. We analyze quantitative data’s frequent sets by using the fuzzy theory, dividing the hierarchy of concept and softening the boundary of attributes’ values and frequency. In this paper, we use the vertical-style data and the improved Eclat algorithm to describe the proposed method, we use this algorithm to analyze the data of Beijing logistics route. Experiments show that the algorithm has a good performance, it has better effectiveness and high efficiency.展开更多
To improve the ability and precisions of the fuzzy control,this thesis points out the adjusted fuzzy control method,realizes the precision of the fuzzy quantity, and reduces the number of the fuzzy control rules,so th...To improve the ability and precisions of the fuzzy control,this thesis points out the adjusted fuzzy control method,realizes the precision of the fuzzy quantity, and reduces the number of the fuzzy control rules,so that it can predigest the process of disigns and realize the methods without influencing the idiocratic control,which are on the base of the domain flexing.展开更多
Tourism demand forecasting has attracted substantial interest because of the significant economic contributions of the fast-growing tourism industry. Although various quantitative forecasting techniques have been wide...Tourism demand forecasting has attracted substantial interest because of the significant economic contributions of the fast-growing tourism industry. Although various quantitative forecasting techniques have been widely studied, highly accurate and understandable forecasting models have not been developed. The present paper proposes a novel tourism demand forecasting method that extracts fuzzy Takagi-Sugeno (T-S) rules from trained SVMs. Unlike previous approaches, this study uses fuzzy T-S models extracted from the outputs of trained SVMs on tourism data. Owing to the symbolic fuzzy rules and the generalization ability of SVMs, the extracted fuzzy T-S rules exhibit high forecasting accuracy and include understandable pre-condition parts for practitioners. Based on the tourism demand forecasting problem in Hong Kong SAR, China as a case study, empirical findings on tourist arrivals from nine overseas origins reveal that the proposed approach performs comparably with SVMs and can achieve better prediction accuracy than other forecasting techniques for most origins. The findings demonstrated that decision makers can easily interpret fuzzy T-S rules extracted from SVMs. Thus, the approach is highly beneficial to tourism market management. This finding demonstrates the excellent scientific and practical values of the proposed approach in tourism demand forecasting.展开更多
The amount of data for decision making has increased tremendously in the age of the digital economy. Decision makers who fail to proficiently manipulate the data produced may make incorrect decisions and therefore har...The amount of data for decision making has increased tremendously in the age of the digital economy. Decision makers who fail to proficiently manipulate the data produced may make incorrect decisions and therefore harm their business. Thus, the task of extracting and classifying the useful information efficiently and effectively from huge amounts of computational data is of special importance. In this paper, we consider that the attributes of data could be both crisp and fuzzy. By examining the suitable partial data, segments with different classes are formed, then a multithreaded computation is performed to generate crisp rules (if possible), and finally, the fuzzy partition technique is employed to deal with the fuzzy attributes for classification. The rules generated in classifying the overall data can be used to gain more knowledge from the data collected.展开更多
Active databases react to stimulation, or event from inside or outside the system without user or application interference through Events Conditions Actions(ECA) rules (triggers). ECA rule is defined as: ON event IF c...Active databases react to stimulation, or event from inside or outside the system without user or application interference through Events Conditions Actions(ECA) rules (triggers). ECA rule is defined as: ON event IF condition THEN action, which means when an event happens, if the condition is satisfied then the corresponding action is executed. The nature of ECA rule makes it an appropriate means to model dynamic character of systems, as gained much studies during recent years. Traditional ECA rule is crisp, which means their events, condition (s) and action(s) are accurate. As indicate that ECA rules can only represent precise knowledge. But knowledge is usually fuzzy in engineering. A concept of fuzzy ECA rules characterized with fuzzy event, fuzzy condition and fuzzy action is proposed in this article.The realization avenues of fuzzy triggers are discussed. The work we have done blazes a way in representing approximate syntax in active database application systems. At last a case of 'overheating alarm' is given to illustrate the approach.展开更多
A fast generation method of fuzzy rules for flux optimization decision-making was proposed in order to extract the linguistic knowledge from numerical data in the process of matter converting. The fuzzy if-then rules ...A fast generation method of fuzzy rules for flux optimization decision-making was proposed in order to extract the linguistic knowledge from numerical data in the process of matter converting. The fuzzy if-then rules with consequent real number were extracted from numerical data, and a linguistic representation method for deriving linguistic rules from fuzzy if-then rules with consequent real numbers was developed. The linguistic representation consisted of The simulat two linguistic variables with the degree of certainty and the storage structure of rule base was described. on results show that the method involves neither the time-consuming iterative learning procedure nor the complicated rule generation mechanisms, and can approximate complex system. The method was applied to determine the flux amount of copper converting furnace in the process of matter converting. The real result shows that the mass fraction of Cu in slag is reduced by 0.5 %.展开更多
基金funded by the National Science Foundation of China(62006068)Hebei Natural Science Foundation(A2021402008),Natural Science Foundation of Scientific Research Project of Higher Education in Hebei Province(ZD2020185,QN2020188)333 Talent Supported Project of Hebei Province(C20221026).
文摘Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship between data attributes.However,the creation of fuzzy rules typically depends on expert knowledge,which may not fully leverage the label information in training data and may be subjective.To address this issue,a novel fuzzy rule oversampling approach is developed based on the learning vector quantization(LVQ)algorithm.In this method,the label information of the training data is utilized to determine the antecedent part of If-Then fuzzy rules by dynamically dividing attribute intervals using LVQ.Subsequently,fuzzy rules are generated and adjusted to calculate rule weights.The number of new samples to be synthesized for each rule is then computed,and samples from the minority class are synthesized based on the newly generated fuzzy rules.This results in the establishment of a fuzzy rule oversampling method based on LVQ.To evaluate the effectiveness of this method,comparative experiments are conducted on 12 publicly available imbalance datasets with five other sampling techniques in combination with the support function machine.The experimental results demonstrate that the proposed method can significantly enhance the classification algorithm across seven performance indicators,including a boost of 2.15%to 12.34%in Accuracy,6.11%to 27.06%in G-mean,and 4.69%to 18.78%in AUC.These show that the proposed method is capable of more efficiently improving the classification performance of imbalanced data.
文摘As per World Health Organization report which was released in the year of 2019,Diabetes claimed the lives of approximately 1.5 million individuals globally in 2019 and around 450 million people are affected by diabetes all over the world.Hence it is inferred that diabetes is rampant across the world with the majority of the world population being affected by it.Among the diabetics,it can be observed that a large number of people had failed to identify their disease in the initial stage itself and hence the disease level moved from Type-1 to Type-2.To avoid this situation,we propose a new fuzzy logic based neural classifier for early detection of diabetes.A set of new neuro-fuzzy rules is introduced with time constraints that are applied for thefirst level classification.These levels are further refined by using the Fuzzy Cognitive Maps(FCM)with time intervals for making thefinal decision over the classification process.The main objective of this proposed model is to detect the diabetes level based on the time.Also,the set of neuro-fuzzy rules are used for selecting the most contributing values over the decision-making process in diabetes prediction.The proposed model proved its efficiency in performance after experiments conducted not only from the repository but also by using the standard diabetic detection models that are available in the market.
文摘Breast cancer remains a significant global health challenge, necessitating effective early detection and prognosis to enhance patient outcomes. Current diagnostic methods, including mammography and MRI, suffer from limitations such as uncertainty and imprecise data, leading to late-stage diagnoses. To address this, various expert systems have been developed, but many rely on type-1 fuzzy logic and lack mobile-based applications for data collection and feedback to healthcare practitioners. This research investigates the development of an Enhanced Mobile-based Fuzzy Expert system (EMFES) for breast cancer pre-growth prognosis. The study explores the use of type-2 fuzzy logic to enhance accuracy and model uncertainty effectively. Additionally, it evaluates the advantages of employing the python programming language over java for implementation and considers specific risk factors for data collection. The research aims to dynamically generate fuzzy rules, adapting to evolving breast cancer research and patient data. Key research questions focus on the comparative effectiveness of type-2 fuzzy logic, the handling of uncertainty and imprecise data, the integration of mobile-based features, the choice of programming language, and the creation of dynamic fuzzy rules. Furthermore, the study examines the differences between the Mamdani Inference System and the Sugeno Fuzzy Inference method and explores challenges and opportunities in deploying the EMFES on mobile devices. The research identifies a critical gap in existing breast cancer diagnostic systems, emphasizing the need for a comprehensive, mobile-enabled, and adaptable solution by developing an EMFES that leverages Type-2 fuzzy logic, the Sugeno Inference Algorithm, Python Programming, and dynamic fuzzy rule generation. This study seeks to enhance early breast cancer detection and ultimately reduce breast cancer-related mortality.
基金supported in part by the National Natural Science Foundation of China(Nos.52275126 and 52105159)the Science and Technology Planning Project of Shaanxi Province,China(No.2024GX-YBXM-292).
文摘Lubricant diagnosis serves as a crucial accordance for condition-based maintenance(CBM)involving oil changing and wear examination of critical parts in equipment.However,the accuracy of traditional end-to-end diagnosis models is often limited by the inconsistency and random fluctuations in multiple monitoring indicators.To address this,an attribute-driven adaptive diagnosis method is developed,involving three attributes:physicochemical,contamination,and wear.Correspondingly,a fuzzy fault tree(termed FFT)-based model is constructed containing the logic correlations from monitoring indicators to attributes and to lubricant failures.In particular,inference rules are integrated to mitigate conflicts arising from the reverse degradation of multiple indicators.With this model,the lubricant conditions can be accurately assessed through rule-based reasoning.Furthermore,to enhance its intelligence,the model is dynamically optimized with lubricant analysis knowledge and monitoring data.For verification,the developed model is tested with lubricant samples from both the fatigue experiment and actual aero-engines.Fatigue experiments reveal that the proposed model can improve the lubricant diagnosis accuracy from 73.4%to 92.6%compared with the existing methods.While for the engine lubricant test,a high accuracy of 90%was achieved.
基金The National Natural Science Foundation of China(No.60473045)the Technology Research Project of Hebei Province(No.05213573)the Research Plan of Education Office of Hebei Province(No.2004406)
文摘To deal with the problem that arises when the conventional fuzzy class-association method applies repetitive scans of the classifier to classify new texts,which has low efficiency, a new approach based on the FCR-tree(fuzzy classification rules tree)for text categorization is proposed.The compactness of the FCR-tree saves significant space in storing a large set of rules when there are many repeated words in the rules.In comparison with classification rules,the fuzzy classification rules contain not only words,but also the fuzzy sets corresponding to the frequencies of words appearing in texts.Therefore,the construction of an FCR-tree and its structure are different from a CR-tree.To debase the difficulty of FCR-tree construction and rules retrieval,more k-FCR-trees are built.When classifying a new text,it is not necessary to search the paths of the sub-trees led by those words not appearing in this text,thus reducing the number of traveling rules.Experimental results show that the proposed approach obviously outperforms the conventional method in efficiency.
文摘By the analysis of CORBA technology, distributed technology, multi agent, fuzzy cluster, OA system, expert system and decision support technology, a distributed OA expert system model based on fuzzy rules (DOAES) is proposed. In DOAES, the knowledge and experience of decision makers are processed and transferred into the knowledge base. So the system has the adaptive ability and re study function and the decision results are more scientific and more objective. The DOAES is successfully applied in the management system of invest promotion.
基金Project(60574030) supported by the National Natural Science Foundation of ChinaKey Project(60634020) supported by the National Natural Science Foundation of China
文摘There are defects such as the low convergence rate and premature phenomenon on the performance of simple genetic algorithms (SGA) as the values of crossover probability (Pc) and mutation probability (Pro) are fixed. To solve the problems, the fuzzy control method and the genetic algorithms were systematically integrated to create a kind of improved fuzzy adaptive genetic algorithm (FAGA) based on the auto-regulating fuzzy rules (ARFR-FAGA). By using the fuzzy control method, the values of Pc and Pm were adjusted according to the evolutional process, and the fuzzy rules were optimized by another genetic algorithm. Experimental results in solving the function optimization problems demonstrate that the convergence rate and solution quality of ARFR-FAGA exceed those of SGA, AGA and fuzzy adaptive genetic algorithm based on expertise (EFAGA) obviously in the global search.
基金supported by International Science and Technology Cooperation project (Grant No. 2008DFA71750)
文摘In metal cutting industry it is a common practice to search for optimal combination of cutting parameters in order to maximize the tool life for a fixed minimum value of material removal rate(MRR). After the advent of high-speed milling(HSM) pro cess, lots of experimental and theoretical researches have been done for this purpose which mainly emphasized on the optimization of the cutting parameters. It is highly beneficial to convert raw data into a comprehensive knowledge-based expert system using fuzzy logic as the reasoning mechanism. In this paper an attempt has been presented for the extraction of the rules from fuzzy neural network(FNN) so as to have the most effective knowledge-base for given set of data. Experiments were conducted to determine the best values of cutting speeds that can maximize tool life for different combinations of input parameters. A fuzzy neural network was constructed based on the fuzzification of input parameters and the cutting speed. After training process, raw rule sets were extracted and a rule pruning approach was proposed to obtain concise linguistic rules. The estimation process with fuzzy inference showed that the optimized combination of fuzzy rules provided the estimation error of only 6.34 m/min as compared to 314 m/min of that of randomized combination of rule s.
文摘Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper describes an improved SPSA algorithm, which entails fuzzy adaptive gain sequences, gradient smoothing, and a step rejection procedure to enhance convergence and stability. The proposed fuzzy adaptive simultaneous perturbation approximation (FASPA) algorithm is particularly well suited to problems involving a large number of parameters such as those encountered in nonlinear system identification using neural networks (NNs). Accordingly, a multilayer perceptron (MLP) network with popular training algorithms was used to predicate the system response. We found that an MLP trained by FASPSA had the desired accuracy that was comparable to results obtained by traditional system identification algorithms. Simulation results for typical nonlinear systems demonstrate that the proposed NN architecture trained with FASPSA yields improved system identification as measured by reduced time of convergence and a smaller identification error.
文摘Data-mining techniques have been developed to turn data into useful task-oriented knowledge. Most algorithms for mining association rules identify relationships among transactions using binary values and find rules at a single-concept level. Extracting multilevel association rules in transaction databases is most commonly used in data mining. This paper proposes a multilevel fuzzy association rule mining model for extraction of implicit knowledge which stored as quantitative values in transactions. For this reason it uses different support value at each level as well as different membership function for each item. By integrating fuzzy-set concepts, data-mining technologies and multiple-level taxonomy, our method finds fuzzy association rules from transaction data sets. This approach adopts a top-down progressively deepening approach to derive large itemsets and also incorporates fuzzy boundaries instead of sharp boundary intervals. Comparing our method with previous ones in simulation shows that the proposed method maintains higher precision, the mined rules are closer to reality, and it gives ability to mine association rules at different levels based on the user’s tendency as well.
基金supported by the National Key R&D Program of China,Grant No.2018YFA0306703 and J2019-V-0001-0092.
文摘Estimating the intention of space objects plays an important role in air-craft design,aviation safety,military and otherfields,and is an important refer-ence basis for air situation analysis and command decision-making.This paper studies an intention estimation method based on fuzzy theory,combining prob-ability to calculate the intention between two objects.This method takes a space object as the origin of coordinates,observes the target’s distance,speed,relative heading angle,altitude difference,steering trend and etc.,then introduces the spe-cific calculation methods of these parameters.Through calculation,values are input into the fuzzy inference model,andfinally the action intention of the target is obtained through the fuzzy rule table and historical weighted probability.Ver-ified by simulation experiment,the target intention inferred by this method is roughly the same as the actual behavior of the target,which proves that the meth-od for identifying the target intention is effective.
基金supported by the Fundamental Research Funds for the Central Universities under Grants No.ZYGX2014J051 and No.ZYGX2014J066Science and Technology Projects in Sichuan Province under Grants No.2015JY0178,No.2016FZ0002,No.2014GZ0109,No.2015KZ002 and No.2015JY0030China Postdoctoral Science Foundation under Grant No.2015M572464
文摘At present, most of the association rules algorithms are based on the Boolean attribute and single-level association rules mining. But data of the real world has various types, the multi-level and quantitative attributes are got more and more attention. And the most important step is to mine frequent sets. In this paper, we propose an algorithm that is called fuzzy multiple-level association (FMA) rules to mine frequent sets. It is based on the improved Eclat algorithm that is different to many researchers’ proposed algorithms thatused the Apriori algorithm. We analyze quantitative data’s frequent sets by using the fuzzy theory, dividing the hierarchy of concept and softening the boundary of attributes’ values and frequency. In this paper, we use the vertical-style data and the improved Eclat algorithm to describe the proposed method, we use this algorithm to analyze the data of Beijing logistics route. Experiments show that the algorithm has a good performance, it has better effectiveness and high efficiency.
文摘To improve the ability and precisions of the fuzzy control,this thesis points out the adjusted fuzzy control method,realizes the precision of the fuzzy quantity, and reduces the number of the fuzzy control rules,so that it can predigest the process of disigns and realize the methods without influencing the idiocratic control,which are on the base of the domain flexing.
文摘Tourism demand forecasting has attracted substantial interest because of the significant economic contributions of the fast-growing tourism industry. Although various quantitative forecasting techniques have been widely studied, highly accurate and understandable forecasting models have not been developed. The present paper proposes a novel tourism demand forecasting method that extracts fuzzy Takagi-Sugeno (T-S) rules from trained SVMs. Unlike previous approaches, this study uses fuzzy T-S models extracted from the outputs of trained SVMs on tourism data. Owing to the symbolic fuzzy rules and the generalization ability of SVMs, the extracted fuzzy T-S rules exhibit high forecasting accuracy and include understandable pre-condition parts for practitioners. Based on the tourism demand forecasting problem in Hong Kong SAR, China as a case study, empirical findings on tourist arrivals from nine overseas origins reveal that the proposed approach performs comparably with SVMs and can achieve better prediction accuracy than other forecasting techniques for most origins. The findings demonstrated that decision makers can easily interpret fuzzy T-S rules extracted from SVMs. Thus, the approach is highly beneficial to tourism market management. This finding demonstrates the excellent scientific and practical values of the proposed approach in tourism demand forecasting.
文摘The amount of data for decision making has increased tremendously in the age of the digital economy. Decision makers who fail to proficiently manipulate the data produced may make incorrect decisions and therefore harm their business. Thus, the task of extracting and classifying the useful information efficiently and effectively from huge amounts of computational data is of special importance. In this paper, we consider that the attributes of data could be both crisp and fuzzy. By examining the suitable partial data, segments with different classes are formed, then a multithreaded computation is performed to generate crisp rules (if possible), and finally, the fuzzy partition technique is employed to deal with the fuzzy attributes for classification. The rules generated in classifying the overall data can be used to gain more knowledge from the data collected.
文摘Active databases react to stimulation, or event from inside or outside the system without user or application interference through Events Conditions Actions(ECA) rules (triggers). ECA rule is defined as: ON event IF condition THEN action, which means when an event happens, if the condition is satisfied then the corresponding action is executed. The nature of ECA rule makes it an appropriate means to model dynamic character of systems, as gained much studies during recent years. Traditional ECA rule is crisp, which means their events, condition (s) and action(s) are accurate. As indicate that ECA rules can only represent precise knowledge. But knowledge is usually fuzzy in engineering. A concept of fuzzy ECA rules characterized with fuzzy event, fuzzy condition and fuzzy action is proposed in this article.The realization avenues of fuzzy triggers are discussed. The work we have done blazes a way in representing approximate syntax in active database application systems. At last a case of 'overheating alarm' is given to illustrate the approach.
基金Project(50374079) supported bythe National Natural Science Foundation of China project(2002cB312200) supported bythe State Key Fundamental Research and Development Programof China
文摘A fast generation method of fuzzy rules for flux optimization decision-making was proposed in order to extract the linguistic knowledge from numerical data in the process of matter converting. The fuzzy if-then rules with consequent real number were extracted from numerical data, and a linguistic representation method for deriving linguistic rules from fuzzy if-then rules with consequent real numbers was developed. The linguistic representation consisted of The simulat two linguistic variables with the degree of certainty and the storage structure of rule base was described. on results show that the method involves neither the time-consuming iterative learning procedure nor the complicated rule generation mechanisms, and can approximate complex system. The method was applied to determine the flux amount of copper converting furnace in the process of matter converting. The real result shows that the mass fraction of Cu in slag is reduced by 0.5 %.
基金Acknowledgments: The work was supported in part by the National Science Foundation of China (No. 70571032) and the Scientific Research Foundation of Hunan Provincial Education Department (No. 06C367).