Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is a...Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is also beneficial for three parametric data.By Pythagorean fuzzy sets,the difference is calculated only between two parameters(membership and non-membership).According to human thoughts,fuzzy data can be found in three parameters(membership uncertainty,and non-membership).So,to make a compromise decision,comparing Sq-LDFSs is essential.Existing measures of different fuzzy sets do,however,can have several flaws that can lead to counterintuitive results.For instance,they treat any increase or decrease in the membership degree as the same as the non-membership degree because the uncertainty does not change,even though each parameter has a different implication.In the Sq-LDFSs comparison,this research develops the differentialmeasure(DFM).Themain goal of the DFM is to cover the unfair arguments that come from treating different types of FSs opposing criteria equally.Due to their relative positions in the attribute space and the similarity of their membership and non-membership degrees,two Sq-LDFSs formthis preference connectionwhen the uncertainty remains same in both sets.According to the degree of superiority or inferiority,two Sq-LDFSs are shown as identical,equivalent,superior,or inferior over one another.The suggested DFM’s fundamental characteristics are provided.Based on the newly developed DFM,a unique approach tomultiple criterion group decision-making is offered.Our suggestedmethod verifies the novel way of calculating the expert weights for Sq-LDFSS as in PFSs.Our proposed technique in three parameters is applied to evaluate solid-state drives and choose the optimum photovoltaic cell in two applications by taking uncertainty parameter zero.The method’s applicability and validity shown by the findings are contrasted with those obtained using various other existing approaches.To assess its stability and usefulness,a sensitivity analysis is done.展开更多
Tourism is a popular activity that allows individuals to escape their daily routines and explore new destinations for various reasons,including leisure,pleasure,or business.A recent study has proposed a unique mathema...Tourism is a popular activity that allows individuals to escape their daily routines and explore new destinations for various reasons,including leisure,pleasure,or business.A recent study has proposed a unique mathematical concept called a q−Rung orthopair fuzzy hypersoft set(q−ROFHS)to enhance the formal representation of human thought processes and evaluate tourism carrying capacity.This approach can capture the imprecision and ambiguity often present in human perception.With the advanced mathematical tools in this field,the study has also incorporated the Einstein aggregation operator and score function into the q−ROFHS values to supportmultiattribute decision-making algorithms.By implementing this technique,effective plans can be developed for social and economic development while avoiding detrimental effects such as overcrowding or environmental damage caused by tourism.A case study of selected tourism carrying capacity will demonstrate the proposed methodology.展开更多
In presented fuzzy multi-attribute decision-making (FMADM) problems, the information about attribute weights is interval numbers and the decision maker (DM) has fuzzy complementary preference relation on alternati...In presented fuzzy multi-attribute decision-making (FMADM) problems, the information about attribute weights is interval numbers and the decision maker (DM) has fuzzy complementary preference relation on alternatives. Firstly, the decision-making information based on the subjective preference information in the form of the fuzzy complementary judgment matrix is uniform by using a translation function. Then an objective programming model is established. Attribute weights are obtained by solving the model, thus the fuzzy overall values of alternatives are derived by using the additive weighting method. Secondly, the ranking approach of alternatives is proposed based on the degree of similarity between the fuzzy positive ideal solution of alternatives (FPISA) and the fuzzy overall values. The method can sufficiently utilize the objective information of alternatives and meet the subjective requirements of the DM as much as possible. It is easy to be operated and implemented on a computer. Finally, the proposed method is applied to the project evaluation in the venture investment.展开更多
The procedure of supply chain development is the process of continuously congregating knowledge and transforming knowledge.First,the precondition of synergic knowledge innovation in the supply chain is narrated.Then t...The procedure of supply chain development is the process of continuously congregating knowledge and transforming knowledge.First,the precondition of synergic knowledge innovation in the supply chain is narrated.Then the characteristics of synergic knowledge innovation in the supply chain are analyzed,including complexity,accumulating and evolving process,and the cooperation of members and network integration.Due to the characteristics of multi-factors and uncertainties of the supply chain system,the fuzzy multi-attribution group decision-making model is introduced to solve the involved problem of synergic knowledge innovation in the supply chain.After elaborating on steps of using the fuzzy multiple attribute decision-making(MADM)model,the procedure of decision making for synergic knowledge innovation in the supply chain is explained from an example in the application of a fuzzy MADM model.The fuzzy MADM model,which amalgamates intuition and resolution decision-making can effectively improve the rationality of decision-making for synergic knowledge innovation in the supply chain.展开更多
The fuzzy integration evaluation method (FIEM) is studied in order to select the best orbital elements from the multi-group initial orbits determined by a satellite TT&C (Tracking, Telemetry and Control) center w...The fuzzy integration evaluation method (FIEM) is studied in order to select the best orbital elements from the multi-group initial orbits determined by a satellite TT&C (Tracking, Telemetry and Control) center with all kinds of data sources. By employing FIEM together with the experience of TT&C experts, the index system to evaluate the selection of the best initial orbits is established after the data sources and orbit determination theories are studied. Besides, the concrete steps in employing the method are presented. Moreover, by taking the objects to be evaluated as evaluation experts, the problem of how to generate evaluation matrices is solved. Through practical application, the method to select the best initial orbital elements has been proved to be flexible and effective The originality of the method is to find a new evaluation criterion (comparing the actually tracked orbits) replacing the traditional one (comparing the nominal orbits) for selecting the best orbital elements.展开更多
Food Waste(FW)is a pressing environmental concern that affects every country globally.About one-third of the food that is produced ends up as waste,contributing to the carbon footprint.Hence,the FW must be properly tr...Food Waste(FW)is a pressing environmental concern that affects every country globally.About one-third of the food that is produced ends up as waste,contributing to the carbon footprint.Hence,the FW must be properly treated to reduce environmental pollution.This study evaluates a few available Food Waste Treatment(FWT)technologies,such as anaerobic digestion,composting,landfill,and incineration,which are widely used.A Bipolar Picture Fuzzy Set(BPFS)is proposed to deal with the ambiguity and uncertainty that arise when converting a real-world problem to a mathematical model.A novel Criteria Importance Through Intercriteria Correlation-Stable Preference Ordering Towards Ideal Solution(CRITIC-SPOTIS)approach is developed to objectively analyze FWT selection based on thirteen criteria covering the industry’s technical,environmental,and entrepreneurial aspects.The CRITIC method is used for the objective analysis of the importance of each criterion in FWT selection.The SPOTIS method is adopted to rank the alternative hassle-free,following the criteria.The proposed model offers a rank reversal-free model,i.e.,the rank of the alternatives remains unaffected even after the addition or removal of an alternative.In addition,comparative and sensitivity analyses are performed to ensure the reliability and robustness of the proposed model and to validate the proposed result.展开更多
In this paper,we consider the extension of the concave integral from classical crispσ-algebra to fuzzyσ-algebra of fuzzy sets.Firstly,the concept of fuzzy concave integral on a fuzzy set is introduced.Secondly,some ...In this paper,we consider the extension of the concave integral from classical crispσ-algebra to fuzzyσ-algebra of fuzzy sets.Firstly,the concept of fuzzy concave integral on a fuzzy set is introduced.Secondly,some important properties of such integral are discussed.Finally,various kinds of convergence theorems of a sequence of fuzzy concave integrals are proved.展开更多
The weights of criteria are incompletely known and the criteria values are incomplete and uncertain or even default in some fuzzy multi-criteria decision-making problems.For those problems,an approach based on evident...The weights of criteria are incompletely known and the criteria values are incomplete and uncertain or even default in some fuzzy multi-criteria decision-making problems.For those problems,an approach based on evidential reasoning is proposed,in which the criteria values are integrated on the basis of analytical algorithm of evidential reasoning,and then nonlinear programming models of each alternative are developed with the incomplete information on weights.The genetic algorithm is employed to solve the models,producing the weights and the utility interval of each alternative,and the ranking of the whole set of alternatives can be attained.Finally,an example shows the effectiveness of the method.展开更多
A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four step...A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.展开更多
By reviewing the traditional measure methods of the integration degree of the tourism industry, we concluded that measure methods of the integration degree of the tourism industry can only be limited to the levels of ...By reviewing the traditional measure methods of the integration degree of the tourism industry, we concluded that measure methods of the integration degree of the tourism industry can only be limited to the levels of theoretical analysis due to the defect of the statistical data and the statistical structure. With the help of concept of fusion field and fusion entropy of the tourism industry, a physical model of integration of the tourism industry is established and index system based on AHP is proposed. Using AHP-fuzzy comprehensive evaluation method, the integration degree of Jiangsu and the country's tourism industry are studied. The influencing factors are analyzed and the corresponding countermeasures are proposed.展开更多
Aiming at solving the problems of response lag and lack of precision and stability in constant grinding force control of industrial robot belts,a constant force control strategy combining fuzzy control and proportion ...Aiming at solving the problems of response lag and lack of precision and stability in constant grinding force control of industrial robot belts,a constant force control strategy combining fuzzy control and proportion integration differentiation(PID)was proposed by analyzing the signal transmission process and the dynamic characteristics of the grinding mechanism.The simulation results showed that compared with the classical PID control strategy,the system adjustment time was shortened by 98.7%,the overshoot was reduced by 5.1%,and the control error was 0.2%-0.5%when the system was stabilized.The optimized fuzzy control system had fast adjustment speeds,precise force control and stability.The experimental analysis of the surface morphology of the machined blade was carried out by the industrial robot abrasive grinding mechanism,and the correctness of the theoretical analysis and the effectiveness of the control strategy were verified.展开更多
Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about pos...Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about possible states of nature, in order to make a better judgment while taking new evidence into account. Such a scientific model proposed for the general theory of decision-making, like all others in general, whether in statistics, economics, operations research, A.I., data science or applied mathematics, regardless of whether they are time-dependent, have in common a theoretical basis that is axiomatized by relying on related concepts of a universe of possibles, especially the so-called universe (or the world), the state of nature (or the state of the world), when formulated explicitly. The issue of where to stand as an observer or a decision-maker to reframe such a universe of possibles together with a partition structure of knowledge (i.e. semantic formalisms), including a copy of itself as it was initially while generalizing it, is not addressed. Memory being the substratum, whether human or artificial, wherein everything stands, to date, even the theoretical possibility of such an operation of self-inclusion is prohibited by pure mathematics. We make this blind spot come to light through a counter-example (namely Archimedes’ Eureka experiment) and explore novel theoretical foundations, fitting better with a quantum form than with fuzzy modeling, to deal with more than a reference universe of possibles. This could open up a new path of investigation for the general theory of decision-making, as well as for Artificial Intelligence, often considered as the science of the imitation of human abilities, while being also the science of knowledge representation and the science of concept formation and reasoning.展开更多
Efficient decision-making remains an open challenge in the research community,and many researchers are working to improve accuracy through the use of various computational techniques.In this case,the fuzzification and...Efficient decision-making remains an open challenge in the research community,and many researchers are working to improve accuracy through the use of various computational techniques.In this case,the fuzzification and defuzzification processes can be very useful.Defuzzification is an effective process to get a single number from the output of a fuzzy set.Considering defuzzification as a center point of this research paper,to analyze and understand the effect of different types of vehicles according to their performance.In this paper,the multi-criteria decision-making(MCDM)process under uncertainty and defuzzification is discussed by using the center of the area(COA)or centroidmethod.Further,to find the best solution,Hurwicz criteria are used on the defuzzified data.Anewdecision-making technique is proposed using Hurwicz criteria for triangular and trapezoidal fuzzy numbers.The proposed technique considers all types of decision makers’perspectives such as optimistic,neutral,and pessimistic which is crucial in solving decisionmaking problems.A simple case study is used to demonstrate and discuss the Centroid Method and Hurwicz Criteria for measuring risk attitudes among decision-makers.The significance of the proposed defuzzification method is demonstrated by comparing it to previous defuzzification procedures with its application.展开更多
The objective of this paper is to present a new concept,named cubic q-rung orthopair fuzzy linguistic set(Cq-ROFLS),to quantify the uncertainty in the information.The proposed Cq-ROFLS is a qualitative form of cubic q...The objective of this paper is to present a new concept,named cubic q-rung orthopair fuzzy linguistic set(Cq-ROFLS),to quantify the uncertainty in the information.The proposed Cq-ROFLS is a qualitative form of cubic q-rung orthopair fuzzy set,where membership degrees and nonmembership degrees are represented in terms of linguistic variables.The basic notions of Cq-ROFLS have been introduced and study their basic operations and properties.Furthermore,to aggregate the different pairs of preferences,we introduce the Cq-ROFL Muirhead mean-(MM),weighted MM-,dual MM-based operators.The major advantage of considering the MM is that it considers the interrelationship between more than two arguments at a time.On the other hand,the Cq-ROFLS has the ability to describe the qualitative information in terms of linguistic variables.Several properties and relation of the derived operators are argued.In addition,we also investigate multiattribute decision-making problems under the Cq-ROFLS environment and illustrate with a numerical example.Finally,the effectiveness and advantages of the work are established by comparing with other methods.展开更多
Based on the analyses of existing preference group decision-making(PGDM)methods with intuitionistic fuzzy preference relations(IFPRs),we present a new PGDM framework with incomplete IFPRs.A generalized multiplicative ...Based on the analyses of existing preference group decision-making(PGDM)methods with intuitionistic fuzzy preference relations(IFPRs),we present a new PGDM framework with incomplete IFPRs.A generalized multiplicative consistent for IFPRs is defined,and a mathematical programming model is constructed to supplement the missing values in incomplete IFPRs.Moreover,in this study,another mathematical programming model is constructed to improve the consistency level of unacceptably multiplicative consistent IFPRs.For group decisionmaking(GDM)with incomplete IFPRs,three reliable sources influencing the weights of experts are identified.Subsequently,a method for determining the weights of experts is developed by simultaneously considering three reliable sources.Furthermore,a targeted consensus process(CPR)is developed in this study with reference to the actual situation of the consensus level of each IFPR.Meanwhile,in response to the proposed multiplicative consistency definition,a novel method for determining the optimal priority weights of alternatives is redefined.Lastly,based on the above theory,a novel GDM method with incomplete IFPRs is developed,and the comparative and sensitivity analysis results demonstrate the utility and superiority of this work.展开更多
Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their...Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their scientifical and reasonable information expression and group decision-making model for renal cancer patients.Fuzzy multi-sets(FMSs)have a number of properties,which make them suitable for expressing the uncertain information of medical diagnoses and treatments in group decision-making(GDM)problems.To choose the most appropriate surgical treatment scheme for a patient with localized renal cell carcinoma(RCC)(T1 stage kidney tumor),this article needs to develop an effective GDM model based on the fuzzy multivalued evaluation information of the renal cancer patients.First,we propose a conversionmethod of transforming FMSs into entropy fuzzy sets(EFSs)based on the mean and Shannon entropy of a fuzzy sequence in FMS to reasonably simplify the information expression and operations of FMSs and define the score function of an entropy fuzzy element(EFE)for ranking EFEs.Second,we present the Aczel-Alsina t-norm and t-conorm operations of EFEs and the EFE Aczel-Alsina weighted arithmetic averaging(EFEAAWAA)and EFE Aczel-Alsina weighted geometric averaging(EFEAAWGA)operators.Third,we develop a multicriteria GDM model of renal cancer surgery options in the setting of FMSs.Finally,the proposed GDM model is applied to two clinical cases of renal cancer patients to choose the best surgical treatment scheme for a renal cancer patient in the setting of FMSs.The selected results of two clinical cases verify the efficiency and rationality of the proposed GDM model in the setting of FMSs.展开更多
Blockchain is one of the innovative and disruptive technologies that has a wide range of applications in multiple industries beyond cryptocurrency.The widespread adoption of blockchain technology in various industries...Blockchain is one of the innovative and disruptive technologies that has a wide range of applications in multiple industries beyond cryptocurrency.The widespread adoption of blockchain technology in various industries has shown its potential to solve challenging business problems,as well as the possibility to create new business models which can increase a firm’s competitiveness.Due to the novelty of the technology,whereby many companies are still exploring potential use cases,and considering the complexity of blockchain technology,which may require huge changes to a company’s existing systems and processes,it is important for companies to carefully evaluate suitable use cases and determine if blockchain technology is the best solution for their specific needs.This research aims to provide an evaluation framework that determines the important dimensions of blockchain suitability assessment by identifying the key determinants of suitable use cases in a business context.In this paper,a novel approach that utilizes both qualitative(Delphi method)and quantitative(fuzzy set theory)methods has been proposed to objectively account for the uncertainty associated with data collection and the vagueness of subjective judgments.This work started by scanning available literature to identify major suitability dimensions and collected a range of criteria,indicators,and factors that had been previously identified for related purposes.Expert opinions were then gathered using a questionnaire to rank the importance and relevance of these elements to suitability decisions.Subsequently,the data were analyzed and we proceeded to integrate multi-criteria group decision-making(MCGDM)and intuitionistic fuzzy set(IFS)theory.The findings demonstrated a high level of agreement among experts,with the model being extremely sensitive to variances in expert assessments.Furthermore,the results helped to refine and select the most relevant suitability determinants under three important dimensions:functional suitability of the use case,organizational applicability,and ecosystem readiness.展开更多
Spherical fuzzy soft expert set(SFSES)theory blends the perks of spherical fuzzy sets and group decision-making into a unified approach.It allows solutions to highly complicated uncertainties and ambiguities under the...Spherical fuzzy soft expert set(SFSES)theory blends the perks of spherical fuzzy sets and group decision-making into a unified approach.It allows solutions to highly complicated uncertainties and ambiguities under the unbiased supervision and group decision-making of multiple experts.However,SFSES theory has some deficiencies such as the inability to interpret and portray the bipolarity of decision-parameters.This work highlights and overcomes these limitations by introducing the novel spherical fuzzy bipolar soft expert sets(SFBSESs)as a powerful hybridization of spherical fuzzy set theory with bipolar soft expert sets(BSESs).Followed by the development of certain set-theoretic operations and properties of the proposed model,important problems,including the selection of non-powered dam(NPD)sites for hydropower conversion are discussed and solved under the proposed approach.These problems mainly focus on the need for an efficient tool capable of considering the bipolarity of parameters,complicated ambiguities,and multiple opinions.Supporting the new approach by a detailed comparative analysis,it is concluded that the proposed model is more comprehensive and reliable for multi-attribute group decisionmaking(MAGDM)than the previous tools,particularly considering the bipolarity of parameters under SFSES environment.展开更多
A novel model termed a bipolar complex fuzzy N-soft set(BCFN-SS)is initiated for tackling information that involves positive and negative aspects,the second dimension,and parameterised grading simultaneously.The theor...A novel model termed a bipolar complex fuzzy N-soft set(BCFN-SS)is initiated for tackling information that involves positive and negative aspects,the second dimension,and parameterised grading simultaneously.The theory of BCFN-SS is the generalisation of two various theories,that is,bipolar complex fuzzy(BCF)and N-SS.The invented model of BCFN-SS helps decision-makers to cope with the genuine-life dilemmas containing BCF information along with parameterised grading at the same time.Further,various algebraic operations,including the usual type of union,intersection,complements,and a few others types,are invented.Certain primary operational laws for BCFNSS are also invented.Moreover,a technique for order preference by similarity to the ideal solution(TOPSIS)approach is devised in the setting of BCFN-SS for managing strategic decision-making(DM)dilemmas containing BCFN-SS information.Keeping in mind the usefulness and benefits of the TOPSIS approach,two various types of TOPSIS approaches in the environment of BCFN-SS are devised and then a numerical example for exposing the usefulness of the devised TOPSIS approach is interpreted.To disclose the prominence and benefits of the devised work,the devised approaches with numerous prevailing work are compared.展开更多
It is not objective to rate the decision-making factors in the traditional failure mode and effect analysis,so fuzzy semantic theory is used in this paper.Six fuzzy semantic scales and their corresponding semantics ar...It is not objective to rate the decision-making factors in the traditional failure mode and effect analysis,so fuzzy semantic theory is used in this paper.Six fuzzy semantic scales and their corresponding semantics are summarized,and a defuzzification method is studied to obtain the fuzzy value table of the six fuzzy semantic scales.For the conflicts between experts in the traditional failure mode and effects analysis,a conflict-resolution algorithm is studied to obtain the failure risk order.Finally,a certain type of industrial valve is used as an example to prove the validity of the theory proposed in this paper.展开更多
基金the Deanship of Scientific Research at Umm Al-Qura University(Grant Code:22UQU4310396DSR65).
文摘Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is also beneficial for three parametric data.By Pythagorean fuzzy sets,the difference is calculated only between two parameters(membership and non-membership).According to human thoughts,fuzzy data can be found in three parameters(membership uncertainty,and non-membership).So,to make a compromise decision,comparing Sq-LDFSs is essential.Existing measures of different fuzzy sets do,however,can have several flaws that can lead to counterintuitive results.For instance,they treat any increase or decrease in the membership degree as the same as the non-membership degree because the uncertainty does not change,even though each parameter has a different implication.In the Sq-LDFSs comparison,this research develops the differentialmeasure(DFM).Themain goal of the DFM is to cover the unfair arguments that come from treating different types of FSs opposing criteria equally.Due to their relative positions in the attribute space and the similarity of their membership and non-membership degrees,two Sq-LDFSs formthis preference connectionwhen the uncertainty remains same in both sets.According to the degree of superiority or inferiority,two Sq-LDFSs are shown as identical,equivalent,superior,or inferior over one another.The suggested DFM’s fundamental characteristics are provided.Based on the newly developed DFM,a unique approach tomultiple criterion group decision-making is offered.Our suggestedmethod verifies the novel way of calculating the expert weights for Sq-LDFSS as in PFSs.Our proposed technique in three parameters is applied to evaluate solid-state drives and choose the optimum photovoltaic cell in two applications by taking uncertainty parameter zero.The method’s applicability and validity shown by the findings are contrasted with those obtained using various other existing approaches.To assess its stability and usefulness,a sensitivity analysis is done.
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1A4A1031509).
文摘Tourism is a popular activity that allows individuals to escape their daily routines and explore new destinations for various reasons,including leisure,pleasure,or business.A recent study has proposed a unique mathematical concept called a q−Rung orthopair fuzzy hypersoft set(q−ROFHS)to enhance the formal representation of human thought processes and evaluate tourism carrying capacity.This approach can capture the imprecision and ambiguity often present in human perception.With the advanced mathematical tools in this field,the study has also incorporated the Einstein aggregation operator and score function into the q−ROFHS values to supportmultiattribute decision-making algorithms.By implementing this technique,effective plans can be developed for social and economic development while avoiding detrimental effects such as overcrowding or environmental damage caused by tourism.A case study of selected tourism carrying capacity will demonstrate the proposed methodology.
文摘In presented fuzzy multi-attribute decision-making (FMADM) problems, the information about attribute weights is interval numbers and the decision maker (DM) has fuzzy complementary preference relation on alternatives. Firstly, the decision-making information based on the subjective preference information in the form of the fuzzy complementary judgment matrix is uniform by using a translation function. Then an objective programming model is established. Attribute weights are obtained by solving the model, thus the fuzzy overall values of alternatives are derived by using the additive weighting method. Secondly, the ranking approach of alternatives is proposed based on the degree of similarity between the fuzzy positive ideal solution of alternatives (FPISA) and the fuzzy overall values. The method can sufficiently utilize the objective information of alternatives and meet the subjective requirements of the DM as much as possible. It is easy to be operated and implemented on a computer. Finally, the proposed method is applied to the project evaluation in the venture investment.
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2006BAH02A06)
文摘The procedure of supply chain development is the process of continuously congregating knowledge and transforming knowledge.First,the precondition of synergic knowledge innovation in the supply chain is narrated.Then the characteristics of synergic knowledge innovation in the supply chain are analyzed,including complexity,accumulating and evolving process,and the cooperation of members and network integration.Due to the characteristics of multi-factors and uncertainties of the supply chain system,the fuzzy multi-attribution group decision-making model is introduced to solve the involved problem of synergic knowledge innovation in the supply chain.After elaborating on steps of using the fuzzy multiple attribute decision-making(MADM)model,the procedure of decision making for synergic knowledge innovation in the supply chain is explained from an example in the application of a fuzzy MADM model.The fuzzy MADM model,which amalgamates intuition and resolution decision-making can effectively improve the rationality of decision-making for synergic knowledge innovation in the supply chain.
基金This project was supported by the Evaluate Quality of Satellite TT&C Mission(C0112)
文摘The fuzzy integration evaluation method (FIEM) is studied in order to select the best orbital elements from the multi-group initial orbits determined by a satellite TT&C (Tracking, Telemetry and Control) center with all kinds of data sources. By employing FIEM together with the experience of TT&C experts, the index system to evaluate the selection of the best initial orbits is established after the data sources and orbit determination theories are studied. Besides, the concrete steps in employing the method are presented. Moreover, by taking the objects to be evaluated as evaluation experts, the problem of how to generate evaluation matrices is solved. Through practical application, the method to select the best initial orbital elements has been proved to be flexible and effective The originality of the method is to find a new evaluation criterion (comparing the actually tracked orbits) replacing the traditional one (comparing the nominal orbits) for selecting the best orbital elements.
文摘Food Waste(FW)is a pressing environmental concern that affects every country globally.About one-third of the food that is produced ends up as waste,contributing to the carbon footprint.Hence,the FW must be properly treated to reduce environmental pollution.This study evaluates a few available Food Waste Treatment(FWT)technologies,such as anaerobic digestion,composting,landfill,and incineration,which are widely used.A Bipolar Picture Fuzzy Set(BPFS)is proposed to deal with the ambiguity and uncertainty that arise when converting a real-world problem to a mathematical model.A novel Criteria Importance Through Intercriteria Correlation-Stable Preference Ordering Towards Ideal Solution(CRITIC-SPOTIS)approach is developed to objectively analyze FWT selection based on thirteen criteria covering the industry’s technical,environmental,and entrepreneurial aspects.The CRITIC method is used for the objective analysis of the importance of each criterion in FWT selection.The SPOTIS method is adopted to rank the alternative hassle-free,following the criteria.The proposed model offers a rank reversal-free model,i.e.,the rank of the alternatives remains unaffected even after the addition or removal of an alternative.In addition,comparative and sensitivity analyses are performed to ensure the reliability and robustness of the proposed model and to validate the proposed result.
基金Supported in part by the National Social Science Foundation of China(19BTJ020)。
文摘In this paper,we consider the extension of the concave integral from classical crispσ-algebra to fuzzyσ-algebra of fuzzy sets.Firstly,the concept of fuzzy concave integral on a fuzzy set is introduced.Secondly,some important properties of such integral are discussed.Finally,various kinds of convergence theorems of a sequence of fuzzy concave integrals are proved.
基金supported by the National Natural Science Foundation of China(7077111570921001)and Key Project of National Natural Science Foundation of China(70631004)
文摘The weights of criteria are incompletely known and the criteria values are incomplete and uncertain or even default in some fuzzy multi-criteria decision-making problems.For those problems,an approach based on evidential reasoning is proposed,in which the criteria values are integrated on the basis of analytical algorithm of evidential reasoning,and then nonlinear programming models of each alternative are developed with the incomplete information on weights.The genetic algorithm is employed to solve the models,producing the weights and the utility interval of each alternative,and the ranking of the whole set of alternatives can be attained.Finally,an example shows the effectiveness of the method.
基金supported by the National Basic Research Program of China (973 Program) (2010CB734104)
文摘A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.
基金supported by Humanities and Social Sciences Foundation of the Ministry of Education in China (12YJA790163)
文摘By reviewing the traditional measure methods of the integration degree of the tourism industry, we concluded that measure methods of the integration degree of the tourism industry can only be limited to the levels of theoretical analysis due to the defect of the statistical data and the statistical structure. With the help of concept of fusion field and fusion entropy of the tourism industry, a physical model of integration of the tourism industry is established and index system based on AHP is proposed. Using AHP-fuzzy comprehensive evaluation method, the integration degree of Jiangsu and the country's tourism industry are studied. The influencing factors are analyzed and the corresponding countermeasures are proposed.
基金Civil Project of China Aerospace Science and Technology CorporationUniversity-Industry Collaborative Education Program of Ministry of Education of China(No.220906517214433)。
文摘Aiming at solving the problems of response lag and lack of precision and stability in constant grinding force control of industrial robot belts,a constant force control strategy combining fuzzy control and proportion integration differentiation(PID)was proposed by analyzing the signal transmission process and the dynamic characteristics of the grinding mechanism.The simulation results showed that compared with the classical PID control strategy,the system adjustment time was shortened by 98.7%,the overshoot was reduced by 5.1%,and the control error was 0.2%-0.5%when the system was stabilized.The optimized fuzzy control system had fast adjustment speeds,precise force control and stability.The experimental analysis of the surface morphology of the machined blade was carried out by the industrial robot abrasive grinding mechanism,and the correctness of the theoretical analysis and the effectiveness of the control strategy were verified.
文摘Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about possible states of nature, in order to make a better judgment while taking new evidence into account. Such a scientific model proposed for the general theory of decision-making, like all others in general, whether in statistics, economics, operations research, A.I., data science or applied mathematics, regardless of whether they are time-dependent, have in common a theoretical basis that is axiomatized by relying on related concepts of a universe of possibles, especially the so-called universe (or the world), the state of nature (or the state of the world), when formulated explicitly. The issue of where to stand as an observer or a decision-maker to reframe such a universe of possibles together with a partition structure of knowledge (i.e. semantic formalisms), including a copy of itself as it was initially while generalizing it, is not addressed. Memory being the substratum, whether human or artificial, wherein everything stands, to date, even the theoretical possibility of such an operation of self-inclusion is prohibited by pure mathematics. We make this blind spot come to light through a counter-example (namely Archimedes’ Eureka experiment) and explore novel theoretical foundations, fitting better with a quantum form than with fuzzy modeling, to deal with more than a reference universe of possibles. This could open up a new path of investigation for the general theory of decision-making, as well as for Artificial Intelligence, often considered as the science of the imitation of human abilities, while being also the science of knowledge representation and the science of concept formation and reasoning.
基金The Research Center for Advanced Materials Science(RCAMS)at King Khalid University,Saudi Arabia,for funding this work under the Grant Number RCAMS/KKU/019-20.
文摘Efficient decision-making remains an open challenge in the research community,and many researchers are working to improve accuracy through the use of various computational techniques.In this case,the fuzzification and defuzzification processes can be very useful.Defuzzification is an effective process to get a single number from the output of a fuzzy set.Considering defuzzification as a center point of this research paper,to analyze and understand the effect of different types of vehicles according to their performance.In this paper,the multi-criteria decision-making(MCDM)process under uncertainty and defuzzification is discussed by using the center of the area(COA)or centroidmethod.Further,to find the best solution,Hurwicz criteria are used on the defuzzified data.Anewdecision-making technique is proposed using Hurwicz criteria for triangular and trapezoidal fuzzy numbers.The proposed technique considers all types of decision makers’perspectives such as optimistic,neutral,and pessimistic which is crucial in solving decisionmaking problems.A simple case study is used to demonstrate and discuss the Centroid Method and Hurwicz Criteria for measuring risk attitudes among decision-makers.The significance of the proposed defuzzification method is demonstrated by comparing it to previous defuzzification procedures with its application.
文摘The objective of this paper is to present a new concept,named cubic q-rung orthopair fuzzy linguistic set(Cq-ROFLS),to quantify the uncertainty in the information.The proposed Cq-ROFLS is a qualitative form of cubic q-rung orthopair fuzzy set,where membership degrees and nonmembership degrees are represented in terms of linguistic variables.The basic notions of Cq-ROFLS have been introduced and study their basic operations and properties.Furthermore,to aggregate the different pairs of preferences,we introduce the Cq-ROFL Muirhead mean-(MM),weighted MM-,dual MM-based operators.The major advantage of considering the MM is that it considers the interrelationship between more than two arguments at a time.On the other hand,the Cq-ROFLS has the ability to describe the qualitative information in terms of linguistic variables.Several properties and relation of the derived operators are argued.In addition,we also investigate multiattribute decision-making problems under the Cq-ROFLS environment and illustrate with a numerical example.Finally,the effectiveness and advantages of the work are established by comparing with other methods.
基金supported by the National Natural Science Foundation of China(Nos.71740021,11861034,and 61966030)the Humanities Social Science Programming Project of Ministry of Education of China(No.20YJA630059)+1 种基金the Natural Science Foundation of Jiangxi Province of China(No.20192BAB207012)the Natural Science Foundation of Qinghai Province of China(No.2019-ZJ-7086).
文摘Based on the analyses of existing preference group decision-making(PGDM)methods with intuitionistic fuzzy preference relations(IFPRs),we present a new PGDM framework with incomplete IFPRs.A generalized multiplicative consistent for IFPRs is defined,and a mathematical programming model is constructed to supplement the missing values in incomplete IFPRs.Moreover,in this study,another mathematical programming model is constructed to improve the consistency level of unacceptably multiplicative consistent IFPRs.For group decisionmaking(GDM)with incomplete IFPRs,three reliable sources influencing the weights of experts are identified.Subsequently,a method for determining the weights of experts is developed by simultaneously considering three reliable sources.Furthermore,a targeted consensus process(CPR)is developed in this study with reference to the actual situation of the consensus level of each IFPR.Meanwhile,in response to the proposed multiplicative consistency definition,a novel method for determining the optimal priority weights of alternatives is redefined.Lastly,based on the above theory,a novel GDM method with incomplete IFPRs is developed,and the comparative and sensitivity analysis results demonstrate the utility and superiority of this work.
基金This study has received funding by the Science and Technology Plan Project of Keqiao District(No.2020KZ58).
文摘Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their scientifical and reasonable information expression and group decision-making model for renal cancer patients.Fuzzy multi-sets(FMSs)have a number of properties,which make them suitable for expressing the uncertain information of medical diagnoses and treatments in group decision-making(GDM)problems.To choose the most appropriate surgical treatment scheme for a patient with localized renal cell carcinoma(RCC)(T1 stage kidney tumor),this article needs to develop an effective GDM model based on the fuzzy multivalued evaluation information of the renal cancer patients.First,we propose a conversionmethod of transforming FMSs into entropy fuzzy sets(EFSs)based on the mean and Shannon entropy of a fuzzy sequence in FMS to reasonably simplify the information expression and operations of FMSs and define the score function of an entropy fuzzy element(EFE)for ranking EFEs.Second,we present the Aczel-Alsina t-norm and t-conorm operations of EFEs and the EFE Aczel-Alsina weighted arithmetic averaging(EFEAAWAA)and EFE Aczel-Alsina weighted geometric averaging(EFEAAWGA)operators.Third,we develop a multicriteria GDM model of renal cancer surgery options in the setting of FMSs.Finally,the proposed GDM model is applied to two clinical cases of renal cancer patients to choose the best surgical treatment scheme for a renal cancer patient in the setting of FMSs.The selected results of two clinical cases verify the efficiency and rationality of the proposed GDM model in the setting of FMSs.
文摘Blockchain is one of the innovative and disruptive technologies that has a wide range of applications in multiple industries beyond cryptocurrency.The widespread adoption of blockchain technology in various industries has shown its potential to solve challenging business problems,as well as the possibility to create new business models which can increase a firm’s competitiveness.Due to the novelty of the technology,whereby many companies are still exploring potential use cases,and considering the complexity of blockchain technology,which may require huge changes to a company’s existing systems and processes,it is important for companies to carefully evaluate suitable use cases and determine if blockchain technology is the best solution for their specific needs.This research aims to provide an evaluation framework that determines the important dimensions of blockchain suitability assessment by identifying the key determinants of suitable use cases in a business context.In this paper,a novel approach that utilizes both qualitative(Delphi method)and quantitative(fuzzy set theory)methods has been proposed to objectively account for the uncertainty associated with data collection and the vagueness of subjective judgments.This work started by scanning available literature to identify major suitability dimensions and collected a range of criteria,indicators,and factors that had been previously identified for related purposes.Expert opinions were then gathered using a questionnaire to rank the importance and relevance of these elements to suitability decisions.Subsequently,the data were analyzed and we proceeded to integrate multi-criteria group decision-making(MCGDM)and intuitionistic fuzzy set(IFS)theory.The findings demonstrated a high level of agreement among experts,with the model being extremely sensitive to variances in expert assessments.Furthermore,the results helped to refine and select the most relevant suitability determinants under three important dimensions:functional suitability of the use case,organizational applicability,and ecosystem readiness.
基金Funding Statement:The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the LargeGroup Research Project underGrant Number(R.G.P.2/181/44).
文摘Spherical fuzzy soft expert set(SFSES)theory blends the perks of spherical fuzzy sets and group decision-making into a unified approach.It allows solutions to highly complicated uncertainties and ambiguities under the unbiased supervision and group decision-making of multiple experts.However,SFSES theory has some deficiencies such as the inability to interpret and portray the bipolarity of decision-parameters.This work highlights and overcomes these limitations by introducing the novel spherical fuzzy bipolar soft expert sets(SFBSESs)as a powerful hybridization of spherical fuzzy set theory with bipolar soft expert sets(BSESs).Followed by the development of certain set-theoretic operations and properties of the proposed model,important problems,including the selection of non-powered dam(NPD)sites for hydropower conversion are discussed and solved under the proposed approach.These problems mainly focus on the need for an efficient tool capable of considering the bipolarity of parameters,complicated ambiguities,and multiple opinions.Supporting the new approach by a detailed comparative analysis,it is concluded that the proposed model is more comprehensive and reliable for multi-attribute group decisionmaking(MAGDM)than the previous tools,particularly considering the bipolarity of parameters under SFSES environment.
文摘A novel model termed a bipolar complex fuzzy N-soft set(BCFN-SS)is initiated for tackling information that involves positive and negative aspects,the second dimension,and parameterised grading simultaneously.The theory of BCFN-SS is the generalisation of two various theories,that is,bipolar complex fuzzy(BCF)and N-SS.The invented model of BCFN-SS helps decision-makers to cope with the genuine-life dilemmas containing BCF information along with parameterised grading at the same time.Further,various algebraic operations,including the usual type of union,intersection,complements,and a few others types,are invented.Certain primary operational laws for BCFNSS are also invented.Moreover,a technique for order preference by similarity to the ideal solution(TOPSIS)approach is devised in the setting of BCFN-SS for managing strategic decision-making(DM)dilemmas containing BCFN-SS information.Keeping in mind the usefulness and benefits of the TOPSIS approach,two various types of TOPSIS approaches in the environment of BCFN-SS are devised and then a numerical example for exposing the usefulness of the devised TOPSIS approach is interpreted.To disclose the prominence and benefits of the devised work,the devised approaches with numerous prevailing work are compared.
基金National Natural Science Foundation of China(No.51565019)the Scientific Research Start-Up Program of Tongji University,China(No.20141110)
文摘It is not objective to rate the decision-making factors in the traditional failure mode and effect analysis,so fuzzy semantic theory is used in this paper.Six fuzzy semantic scales and their corresponding semantics are summarized,and a defuzzification method is studied to obtain the fuzzy value table of the six fuzzy semantic scales.For the conflicts between experts in the traditional failure mode and effects analysis,a conflict-resolution algorithm is studied to obtain the failure risk order.Finally,a certain type of industrial valve is used as an example to prove the validity of the theory proposed in this paper.