期刊文献+
共找到89篇文章
< 1 2 5 >
每页显示 20 50 100
Multimode Process Monitoring Based on Fuzzy C-means in Locality Preserving Projection Subspace 被引量:5
1
作者 解翔 侍洪波 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1174-1179,共6页
For complex industrial processes with multiple operational conditions, it is important to develop effective monitoring algorithms to ensure the safety of production processes. This paper proposes a novel monitoring st... For complex industrial processes with multiple operational conditions, it is important to develop effective monitoring algorithms to ensure the safety of production processes. This paper proposes a novel monitoring strategy based on fuzzy C-means. The high dimensional historical data are transferred to a low dimensional subspace spanned by locality preserving projection. Then the scores in the novel subspace are classified into several overlapped clusters, each representing an operational mode. The distance statistics of each cluster are integrated though the membership values into a novel BID (Bayesian inference distance) monitoring index. The efficiency and effectiveness of the proposed method are validated though the Tennessee Eastman benchmark process. 展开更多
关键词 multimode process monitoring fuzzy c-means locality preserving projection integrated monitoring index Tennessee Eastman process
下载PDF
Improved evidential fuzzy c-means method 被引量:4
2
作者 JIANG Wen YANG Tian +2 位作者 SHOU Yehang TANG Yongchuan HU Weiwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第1期187-195,共9页
Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI s... Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI segmentation method,which is based on fuzzy c-means(FCM) and DS theory, is proposed. Firstly, the average fusion method is used to reduce the uncertainty and the conflict information in the pictures. Then, the neighborhood information and the different influences of spatial location of neighborhood pixels are taken into consideration to handle the spatial information. Finally, the segmentation and the sensor data fusion are achieved by using the DS theory. The simulated images and the MRI images illustrate that our proposed method is more effective in image segmentation. 展开更多
关键词 average fusion spatial information Dempster-Shafer evidence theory(DS theory) fuzzy c-means(FCM) magnetic resonance imaging(MRI) image segmentation
下载PDF
Fuzzy c-means clustering with non local spatial information for noisy image segmentation 被引量:33
3
作者 Feng Zhao (1) add_zf1119@hotmail.com Licheng Jiao (1) Hanqiang Liu (1) 《Frontiers of Computer Science》 SCIE EI CSCD 2011年第1期45-56,共12页
As an effective image segmentation method, the standard fuzzy c-means (FCM) clustering algorithm is very sensitive to noise in images. Several modified FCM algorithms, using local spatial information, can overcome t... As an effective image segmentation method, the standard fuzzy c-means (FCM) clustering algorithm is very sensitive to noise in images. Several modified FCM algorithms, using local spatial information, can overcome this problem to some degree. However, when the noise level in the image is high, these algorithms still cannot obtain satisfactory segmentation performance. In this paper, we introduce a non local spatial constraint term into the objective function of FCM and propose a fuzzy c- means clustering algorithm with non local spatial information (FCM_NLS). FCM_NLS can deal more effectively with the image noise and preserve geometrical edges in the image. Performance evaluation experiments on synthetic and real images, especially magnetic resonance (MR) images, show that FCM NLS is more robust than both the standard FCM and the modified FCM algorithms using local spatial information for noisy image segmentation. 展开更多
关键词 image segmentation fuzzy clustering algo-rithm non local spatial information magnetic resonance(MR) image
原文传递
Novel Active Contour Model for Image Segmentation Based on Local Fuzzy Gaussian Distribution Fitting
4
作者 Quang Tung Thieu Marie Luong +2 位作者 Jean-Marie Rocchisani Nguyen Linh-Trung Emmanuel Viennet 《Journal of Electronic Science and Technology》 CAS 2012年第2期113-118,共6页
A novel active contour model is proposed, which incorporates local information distributions in a fuzzy energy function to effectively deal with the intensity inhomogeneity. Moreover, the proposed model is convex with... A novel active contour model is proposed, which incorporates local information distributions in a fuzzy energy function to effectively deal with the intensity inhomogeneity. Moreover, the proposed model is convex with respect to the variable which is used for extracting the contour. This makes the model independent on the initial condition and suitable for an automatic segmentation. Furthermore, the energy function is minimized in a computationally efficient way by calculating the fuzzy energy alterations directly. Experiments are carried out to prove the performance of the proposed model over some existing methods. The obtained results confirm the efficiency of the method. 展开更多
关键词 Active contour energy minimization fuzzy energy function local information medical image segmentation.
下载PDF
Automated measurement of three-dimensional cerebral cortical thickness in Alzheimer’s patients using localized gradient vector trajectory in fuzzy membership maps
5
作者 Chiaki Tokunaga Hidetaka Arimura +9 位作者 Takashi Yoshiura Tomoyuki Ohara Yasuo Yamashita Kouji Kobayashi Taiki Magome Yasuhiko Nakamura Hiroshi Honda Hideki Hirata Masafumi Ohki Fukai Toyofuku 《Journal of Biomedical Science and Engineering》 2013年第3期327-336,共10页
Our purpose in this study was to develop an automated method for measuring three-dimensional (3D) cerebral cortical thicknesses in patients with Alzheimer’s disease (AD) using magnetic resonance (MR) images. Our prop... Our purpose in this study was to develop an automated method for measuring three-dimensional (3D) cerebral cortical thicknesses in patients with Alzheimer’s disease (AD) using magnetic resonance (MR) images. Our proposed method consists of mainly three steps. First, a brain parenchymal region was segmented based on brain model matching. Second, a 3D fuzzy membership map for a cerebral cortical region was created by applying a fuzzy c-means (FCM) clustering algorithm to T1-weighted MR images. Third, cerebral cortical thickness was three- dimensionally measured on each cortical surface voxel by using a localized gradient vector trajectory in a fuzzy membership map. Spherical models with 3 mm artificial cortical regions, which were produced using three noise levels of 2%, 5%, and 10%, were employed to evaluate the proposed method. We also applied the proposed method to T1-weighted images obtained from 20 cases, i.e., 10 clinically diagnosed AD cases and 10 clinically normal (CN) subjects. The thicknesses of the 3 mm artificial cortical regions for spherical models with noise levels of 2%, 5%, and 10% were measured by the proposed method as 2.953 ± 0.342, 2.953 ± 0.342 and 2.952 ± 0.343 mm, respectively. Thus the mean thicknesses for the entire cerebral lobar region were 3.1 ± 0.4 mm for AD patients and 3.3 ± 0.4 mm for CN subjects, respectively (p < 0.05). The proposed method could be feasible for measuring the 3D cerebral cortical thickness on individual cortical surface voxels as an atrophy feature in AD. 展开更多
关键词 Alzheimer’s Disease (AD) fuzzy c-means Clustering (FCM) THREE-DIMENSIONAL CEREBRAL CORTICAL Thickness localIZED Gradient Vector
下载PDF
Research on Image Segmentation Algorithm based on Fuzzy C-mean Clustering
6
作者 Xiaona SONG Zuobing WANG 《International Journal of Technology Management》 2015年第2期28-30,共3页
This paper presents a fuzzy C- means clustering image segmentation algorithm based on particle swarm optimization, the method utilizes the strong search ability of particle swarm clustering search center. Because the ... This paper presents a fuzzy C- means clustering image segmentation algorithm based on particle swarm optimization, the method utilizes the strong search ability of particle swarm clustering search center. Because the search clustering center has small amount of calculation according to density, so it can greatly improve the calculation speed of fuzzy C- means algorithm. The experimental results show that, this method can make the fuzzy clustering to obviously improve the speed, so it can achieve fast image segmentation. 展开更多
关键词 Image segmentation fuzzy clustering fuzzy c-means Spatial information ANTI-NOISE
下载PDF
A KNN-based two-step fuzzy clustering weighted algorithm for WLAN indoor positioning 被引量:3
7
作者 Xu Yubin Sun Yongliang Ma Lin 《High Technology Letters》 EI CAS 2011年第3期223-229,共7页
Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to i... Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to improve it. Thus, a KNN-based two-step FCM weighted (KTFW) algorithm for indoor positioning in wireless local area networks (WLAN) is presented in this paper. In KTFW algorithm, k reference points (RPs) chosen by KNN are clustered through FCM based on received signal strength (RSS) and location coordinates. The right clusters are chosen according to rules, so three sets of RPs are formed including the set of k RPs chosen by KNN and are given different weights. RPs supposed to have better contribution to positioning accuracy are given larger weights to improve the positioning accuracy. Simulation results indicate that KTFW generally outperforms KNN and its complexity is greatly reduced through providing initial clustering centers for FCM. 展开更多
关键词 wireless local area networks (WLAN) indoor positioning k-nearest neighbors (KNN) fuzzy c-means (FCM) clustering center
下载PDF
Enhanced kernel-based fuzzy local information clustering integrating neighborhood membership
8
作者 Song Yue Wu Chengmao +1 位作者 Tian Xiaoping Song Qiuyu 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2021年第6期65-81,共17页
To enhance the segmentation performance and robustness of kernel weighted fuzzy local information C-means(KWFLICM) clustering for image segmentation in the presence of high noise, an improved KWFLICM algorithm aggrega... To enhance the segmentation performance and robustness of kernel weighted fuzzy local information C-means(KWFLICM) clustering for image segmentation in the presence of high noise, an improved KWFLICM algorithm aggregating neighborhood membership information is proposed. This algorithm firstly constructs a linear weighted membership function by combining the membership degrees of current pixel and its neighborhood pixels. Then it is normalized to meet the constraint that the sum of membership degree of pixel belonging to different classes is 1. In the end, normalized membership is used to update the clustering centers of KWFLICM algorithm. Experimental results show that the proposed adaptive KWFLICM(AKWFLICM) algorithm outperforms existing state of the art fuzzy clustering-related segmentation algorithms for image with high noise. 展开更多
关键词 image segmentation fuzzy clustering combined membership degree local information factor
原文传递
Analytic design of information granulation-based fuzzy radial basis function neural networks with the aid of multiobjective particle swarm optimization 被引量:2
9
作者 Byoung-Jun Park Jeoung-Nae Choi +1 位作者 Wook-Dong Kim Sung-Kwun Oh 《International Journal of Intelligent Computing and Cybernetics》 EI 2012年第1期4-35,共32页
Purpose–The purpose of this paper is to consider the concept of Fuzzy Radial Basis Function Neural Networks with Information Granulation(IG-FRBFNN)and their optimization realized by means of the Multiobjective Partic... Purpose–The purpose of this paper is to consider the concept of Fuzzy Radial Basis Function Neural Networks with Information Granulation(IG-FRBFNN)and their optimization realized by means of the Multiobjective Particle Swarm Optimization(MOPSO).Design/methodology/approach–In fuzzy modeling,complexity,interpretability(or simplicity)as well as accuracy of the obtained model are essential design criteria.Since the performance of the IG-RBFNN model is directly affected by some parameters,such as the fuzzification coefficient used in the FCM,the number of rules and the orders of the polynomials in the consequent parts of the rules,the authors carry out both structural as well as parametric optimization of the network.A multi-objective Particle Swarm Optimization using Crowding Distance(MOPSO-CD)as well as O/WLS learning-based optimization are exploited to carry out the structural and parametric optimization of the model,respectively,while the optimization is of multiobjective character as it is aimed at the simultaneous minimization of complexity and maximization of accuracy.Findings–The performance of the proposed model is illustrated with the aid of three examples.The proposed optimization method leads to an accurate and highly interpretable fuzzy model.Originality/value–A MOPSO-CD as well as O/WLS learning-based optimization are exploited,respectively,to carry out the structural and parametric optimization of the model.As a result,the proposed methodology is interesting for designing an accurate and highly interpretable fuzzy model. 展开更多
关键词 Modelling Optimization techniques Neural nets Design calculations fuzzy c-means clustering Multi-objective particle swarm optimization information granulation-based fuzzy radial basis function neural network Ordinary least squaresmethod Weighted least square method
原文传递
Adaptive neighbor constrained deviation sparse variant fuzzy c-means clustering for brain MRI of AD subject
10
作者 Sukanta Ghosh Amlan Pratim Hazarika +1 位作者 Abhijit Chandra Rajani K.Mudi 《Visual Informatics》 EI 2021年第4期67-80,共14页
Progression of Alzheimer’s disease(AD)bears close proximity with the tissue loss in the medial temporal lobe(MTL)and enlargement of lateral ventricle(LV).The early stage of AD,mild cognitive impairment(MCI),can be tr... Progression of Alzheimer’s disease(AD)bears close proximity with the tissue loss in the medial temporal lobe(MTL)and enlargement of lateral ventricle(LV).The early stage of AD,mild cognitive impairment(MCI),can be traced by diagnosing brain MRI scans with advanced fuzzy c-means clustering algorithm that helps to take an appropriate intervention.In this paper,firstly the sparsity is initiated in clustering method that too rician noise is also incorporated for brain MR scans of AD subject.Secondly,a novel neighbor pixel constrained fuzzy c-means clustering algorithm is designed where topoloty-based selection of parsimonious neighbor pixels is automated.The adaptability in choice of neighbor pixel class outliers more justified object edge boundary which outperforms a dynamic cluster output.The proposed adaptive neighbor constrained deviation sparse variant fuzzy c-means clustering(AN_DsFCM)can withhold imposed sparsity and withstands rician noise at imposed sparse environment.This novel algorithm is applied for MRI of AD subjects and normative data is acquired to analyse clustering accuracy.The data processing pipeline of theoretically plausible proposition is elaborated in detail.The experimental results are compared with state-of-the-art fuzzy clustering methods for test MRI scans.Visual evaluation and statistical measures are studied to meet both image processing and clinical neurophysiology standards.Overall the performance of proposed AN_DsFCM is significantly better than other methods. 展开更多
关键词 MRI fuzzy c-means Neighbor information modeling SPARSE Rician noise AD
原文传递
结合非局部空间信息和KL信息的鲁棒FCM算法
11
作者 彭家磊 黄成泉 +2 位作者 陈阳 雷欢 覃小素 《西北民族大学学报(自然科学版)》 2024年第1期25-32,共8页
针对传统模糊C均值(Fuzzy C-Means,FCM)聚类算法对噪声敏感的问题,提出一种结合非局部空间信息和KL信息的鲁棒FCM算法.首先,将灰度信息与非局部空间信息相融合,用于增强算法对噪声的鲁棒性;其次,在目标函数中引入KL信息,以便减少分割的... 针对传统模糊C均值(Fuzzy C-Means,FCM)聚类算法对噪声敏感的问题,提出一种结合非局部空间信息和KL信息的鲁棒FCM算法.首先,将灰度信息与非局部空间信息相融合,用于增强算法对噪声的鲁棒性;其次,在目标函数中引入KL信息,以便减少分割的模糊性.在密度为5%的混合噪声条件下,合成图像和自然图像的实验结果表明,该文算法的分割精度较高、鲁棒性较强,能较好地分割噪声图像. 展开更多
关键词 模糊C均值 图像分割 非局部空间信息 KL信息
下载PDF
结合边缘局部信息的FCM抗噪图像分割算法 被引量:14
12
作者 夏菁 张彩明 +1 位作者 张小峰 李雪梅 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第12期2203-2213,共11页
针对传统FCM图像分割算法没有充分利用像素点的邻域关系与局部信息,导致算法对噪声敏感,不能准确地分割出弱边缘区域的问题,提出一种结合图像全局信息与边缘局部信息的分割算法.首先引入局部窗口变异系数和邻域灰度相似性2个概念重新设... 针对传统FCM图像分割算法没有充分利用像素点的邻域关系与局部信息,导致算法对噪声敏感,不能准确地分割出弱边缘区域的问题,提出一种结合图像全局信息与边缘局部信息的分割算法.首先引入局部窗口变异系数和邻域灰度相似性2个概念重新设计模糊因子,使其能够更精确地衡量邻域点对中心点的影响程度,降低噪声对分割的影响;然后在分割结果的边缘上选取局部窗口,将边缘局部信息融入分割过程;最后在选取窗口中再分割,等同于在边缘处增加多个更符合局部信息的聚类中心来纠正被错误分类的像素点.实验结果表明,该算法能够有效地消除噪声对分割的影响,同时保留更多图像细节信息. 展开更多
关键词 模糊C均值聚类 局部变异系数 灰度相似性 边缘局部信息
下载PDF
Delaunay三角剖分的节点模糊信息三维定位方法 被引量:5
13
作者 党小超 李芬芳 郝占军 《计算机工程与应用》 CSCD 北大核心 2016年第23期115-122,243,共9页
为了有效提高三维空间中无线传感器网络节点定位算法的效率,提出了一种基于简单Delaunay三角剖分的模糊信息节点定位方法(Fuzzy Information Node Localization on Delaunay Triangulation,FINL-DT),该方法在定位前先对网络中的锚节点实... 为了有效提高三维空间中无线传感器网络节点定位算法的效率,提出了一种基于简单Delaunay三角剖分的模糊信息节点定位方法(Fuzzy Information Node Localization on Delaunay Triangulation,FINL-DT),该方法在定位前先对网络中的锚节点实现Delaunay三角剖分,然后通过测量各三角形中锚节点与未知节点的方向角和俯仰角实现节点定位。每一轮定位结束后,判断并更新无效锚节点的位置。网络中的节点被定位后充当二级锚节点辅助定位其他节点。通过实验仿真,与SLPM-FI算法和3D-ADAL算法相比,FINL-DT算法提高了节点定位精度,降低了网络能耗。 展开更多
关键词 节点定位 模糊信息 DELAUNAY三角剖分 二级锚节点 定位精度
下载PDF
模糊C-均值聚类图像分割算法的一种改进 被引量:24
14
作者 李琳 范九伦 赵凤 《西安邮电大学学报》 2014年第5期56-60,共5页
针对传统模糊C-均值聚类算法对含噪图像分割时未充分考虑空间信息的问题,提出一种改进的模糊C-均值聚类算法,将图像的局部和非局部两种空间信息引入到模糊C-均值聚类算法的目标函数中,以使两种空间信息在含噪图像分割中发挥互补作用。... 针对传统模糊C-均值聚类算法对含噪图像分割时未充分考虑空间信息的问题,提出一种改进的模糊C-均值聚类算法,将图像的局部和非局部两种空间信息引入到模糊C-均值聚类算法的目标函数中,以使两种空间信息在含噪图像分割中发挥互补作用。将改进算法应用于不同含噪图像的分割实验,结果表明图像像素的均方误差均比改进前有所降低。 展开更多
关键词 图像分割 模糊C-均值聚类 局部空间信息 非局部空间信息
下载PDF
改进的非局部FCM脑核磁共振图像分割与偏移场恢复耦合模型 被引量:6
15
作者 王顺凤 耿志远 +2 位作者 张建伟 陈允杰 张世军 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第9期1412-1418,共7页
核磁共振图像技术可用于对疾病的辅助诊断,然而受成像机制的影响往往图像中含有噪声以及偏移场,使得传统的模糊C均值(FCM)算法很难得到较好的分割结果.为此,提出一种基于FCM算法的分割与偏移场恢复耦合模型.首先将偏移场耦合到模型中,... 核磁共振图像技术可用于对疾病的辅助诊断,然而受成像机制的影响往往图像中含有噪声以及偏移场,使得传统的模糊C均值(FCM)算法很难得到较好的分割结果.为此,提出一种基于FCM算法的分割与偏移场恢复耦合模型.首先将偏移场耦合到模型中,以降低灰度不均匀对分割的影响;其次将非局部信息融入模型中,使其在降低噪声影响的同时还能保持细长拓扑结构区域信息;最后引入隶属度正则项,以降低隶属度在过渡区域的影响,改善模型的分割效果.实验结果证明,文中模型对噪声具有较好的鲁棒性,并且在分割过程中能较好地恢复图像偏移场,得到较理想的分割结果及偏移场估计. 展开更多
关键词 核磁共振图像 模糊C均值 非局部信息 图像分割 偏移场
下载PDF
基于分布信息直觉模糊c均值聚类的红外图像分割算法 被引量:24
16
作者 王晓飞 胡凡奎 黄硕 《通信学报》 EI CSCD 北大核心 2020年第5期120-129,共10页
针对传统的直觉模糊c均值聚类算法进行图像分割时对聚类中心敏感导致最终聚类精度低、细节保留性差、时间复杂度较大等不足,提出了一种适用于电力设备红外图像分割的基于分布信息的直觉模糊c均值聚类算法。红外图像中高强度的非目标对... 针对传统的直觉模糊c均值聚类算法进行图像分割时对聚类中心敏感导致最终聚类精度低、细节保留性差、时间复杂度较大等不足,提出了一种适用于电力设备红外图像分割的基于分布信息的直觉模糊c均值聚类算法。红外图像中高强度的非目标对象与图像强度不均匀对图像分割有较强干扰,所提算法能有效抑制该干扰。首先,将高斯模型引入电力设备的全局空间分布信息中以改进IFCM算法;其次,利用局部空间信息的空间算子优化隶属函数来解决边缘模糊和图像强度不均匀问题。经过对Terravic动态红外数据库与包含300幅电力设备红外图像的数据集进行实验,相对区域错误率在10%左右,受模糊因子m变化影响较小,验证了所提算法在有效性与适用性上明显优于其他对比算法。 展开更多
关键词 直觉模糊c均值聚类 红外图像 高斯模型 局部信息
下载PDF
改进的FKCN与局部信息相结合的图像分割 被引量:4
17
作者 黄宁宁 贾振红 +2 位作者 余银峰 杨杰 庞韶宁 《计算机工程与应用》 CSCD 北大核心 2011年第34期196-198,共3页
FKCN在分割图像时存在速度慢,对噪声比较敏感等问题。对FKCN进行改进,提出了快速的FKCN与图像局部信息相结合的遥感图像分割算法,将图像的空间信息和像素信息引入到改进的FKCN图像分割算法中,从而提高了FKCN的分割速度而且还增强了抗噪... FKCN在分割图像时存在速度慢,对噪声比较敏感等问题。对FKCN进行改进,提出了快速的FKCN与图像局部信息相结合的遥感图像分割算法,将图像的空间信息和像素信息引入到改进的FKCN图像分割算法中,从而提高了FKCN的分割速度而且还增强了抗噪性能。实验结果表明,该算法显示了很好的分割效果和较强的抗噪性能。 展开更多
关键词 KOHONEN网络 局部信息 遥感图像分割 模糊聚类
下载PDF
A Novel Unsupervised Change Detection Method with Structure Consistency and GFLICM Based on UAV Images 被引量:3
18
作者 Wensong LIU Xinyuan JI +2 位作者 Jie LIU Fengcheng GUO Zongqiao YU 《Journal of Geodesy and Geoinformation Science》 2022年第1期91-102,共12页
With the rapid development of Unmanned Aerial Vehicle(UAV)technology,change detection methods based on UAV images have been extensively studied.However,the imaging of UAV sensors is susceptible to environmental interf... With the rapid development of Unmanned Aerial Vehicle(UAV)technology,change detection methods based on UAV images have been extensively studied.However,the imaging of UAV sensors is susceptible to environmental interference,which leads to great differences of same object between UAV images.Overcoming the discrepancy difference between UAV images is crucial to improving the accuracy of change detection.To address this issue,a novel unsupervised change detection method based on structural consistency and the Generalized Fuzzy Local Information C-means Clustering Model(GFLICM)was proposed in this study.Within this method,the establishment of a graph-based structural consistency measure allowed for the detection of change information by comparing structure similarity between UAV images.The local variation coefficient was introduced and a new fuzzy factor was reconstructed,after which the GFLICM algorithm was used to analyze difference images.Finally,change detection results were analyzed qualitatively and quantitatively.To measure the feasibility and robustness of the proposed method,experiments were conducted using two data sets from the cities of Yangzhou and Nanjing.The experimental results show that the proposed method can improve the overall accuracy of change detection and reduce the false alarm rate when compared with other state-of-the-art change detection methods. 展开更多
关键词 change detection UAV images graph model structural consistency Generalized fuzzy local information c-means Clustering Model(GFLICM)
下载PDF
省地一体化电力信息监控平台信息化的动态标尺评价模型 被引量:11
19
作者 李阳 刘俊勇 +3 位作者 刘友波 刘捷 唐震宇 张凤 《电力系统自动化》 EI CSCD 北大核心 2017年第11期134-141,共8页
对当前省地一体化架构下电力信息监控平台的指标体系、评价方法和结果解释进行研究,从基础配置、支撑平台、动环系统、安全和投资能力5个方面刻画电力信息监控平台的综合性能与发展水平。基于模糊层次分析法和聚类分析建立多维加权的信... 对当前省地一体化架构下电力信息监控平台的指标体系、评价方法和结果解释进行研究,从基础配置、支撑平台、动环系统、安全和投资能力5个方面刻画电力信息监控平台的综合性能与发展水平。基于模糊层次分析法和聚类分析建立多维加权的信息化水平静态评估模型;进一步利用数据包络分析法计算各指标评价值,用以获取监控平台信息化的综合性能;引入信息熵和时间度构成时序向量,最终建立动态标尺评价模型。以某网省公司省地一体化电力信息监控平台为研究对象,利用所提的动态标尺评价方法,对其2010年至2015年的多类信息监控数据进行分析判定,分析该省电力信息监控平台信息化水平的现状与趋势。 展开更多
关键词 省地一体化 电力信息监控平台 模糊层次聚类 数据包络分析法 动态标尺评价
下载PDF
虚拟分层三维空间节点模糊信息定位方法 被引量:4
20
作者 党小超 李芬芳 郝占军 《计算机工程与应用》 CSCD 北大核心 2017年第6期122-128,共7页
为了有效提高三维空间中无线传感器网络节点定位算法的效率,提出了一种基于虚拟分层的节点模糊信息定位方法(Nodes’Fuzzy Information Localization algorithm on Virtual Stratification,NFIL-VS),该方法在定位前对网络实现虚拟分层,... 为了有效提高三维空间中无线传感器网络节点定位算法的效率,提出了一种基于虚拟分层的节点模糊信息定位方法(Nodes’Fuzzy Information Localization algorithm on Virtual Stratification,NFIL-VS),该方法在定位前对网络实现虚拟分层,分层后测量各平面上节点之间的方向角和俯仰角等模糊信息实现节点定位。每一轮定位结束后,判断并更新无效锚节点的位置。网络中的节点被定位后充当二级锚节点辅助定位其他节点。通过实验仿真,与SNLSFAMC算法和MANLFI算法相比,提出的NFIL-VS算法提高了节点定位精度,降低了网络能耗。 展开更多
关键词 节点定位 虚拟分层 模糊信息 无效锚节点 定位精度
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部