For complex industrial processes with multiple operational conditions, it is important to develop effective monitoring algorithms to ensure the safety of production processes. This paper proposes a novel monitoring st...For complex industrial processes with multiple operational conditions, it is important to develop effective monitoring algorithms to ensure the safety of production processes. This paper proposes a novel monitoring strategy based on fuzzy C-means. The high dimensional historical data are transferred to a low dimensional subspace spanned by locality preserving projection. Then the scores in the novel subspace are classified into several overlapped clusters, each representing an operational mode. The distance statistics of each cluster are integrated though the membership values into a novel BID (Bayesian inference distance) monitoring index. The efficiency and effectiveness of the proposed method are validated though the Tennessee Eastman benchmark process.展开更多
Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI s...Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI segmentation method,which is based on fuzzy c-means(FCM) and DS theory, is proposed. Firstly, the average fusion method is used to reduce the uncertainty and the conflict information in the pictures. Then, the neighborhood information and the different influences of spatial location of neighborhood pixels are taken into consideration to handle the spatial information. Finally, the segmentation and the sensor data fusion are achieved by using the DS theory. The simulated images and the MRI images illustrate that our proposed method is more effective in image segmentation.展开更多
As an effective image segmentation method, the standard fuzzy c-means (FCM) clustering algorithm is very sensitive to noise in images. Several modified FCM algorithms, using local spatial information, can overcome t...As an effective image segmentation method, the standard fuzzy c-means (FCM) clustering algorithm is very sensitive to noise in images. Several modified FCM algorithms, using local spatial information, can overcome this problem to some degree. However, when the noise level in the image is high, these algorithms still cannot obtain satisfactory segmentation performance. In this paper, we introduce a non local spatial constraint term into the objective function of FCM and propose a fuzzy c- means clustering algorithm with non local spatial information (FCM_NLS). FCM_NLS can deal more effectively with the image noise and preserve geometrical edges in the image. Performance evaluation experiments on synthetic and real images, especially magnetic resonance (MR) images, show that FCM NLS is more robust than both the standard FCM and the modified FCM algorithms using local spatial information for noisy image segmentation.展开更多
A novel active contour model is proposed, which incorporates local information distributions in a fuzzy energy function to effectively deal with the intensity inhomogeneity. Moreover, the proposed model is convex with...A novel active contour model is proposed, which incorporates local information distributions in a fuzzy energy function to effectively deal with the intensity inhomogeneity. Moreover, the proposed model is convex with respect to the variable which is used for extracting the contour. This makes the model independent on the initial condition and suitable for an automatic segmentation. Furthermore, the energy function is minimized in a computationally efficient way by calculating the fuzzy energy alterations directly. Experiments are carried out to prove the performance of the proposed model over some existing methods. The obtained results confirm the efficiency of the method.展开更多
Our purpose in this study was to develop an automated method for measuring three-dimensional (3D) cerebral cortical thicknesses in patients with Alzheimer’s disease (AD) using magnetic resonance (MR) images. Our prop...Our purpose in this study was to develop an automated method for measuring three-dimensional (3D) cerebral cortical thicknesses in patients with Alzheimer’s disease (AD) using magnetic resonance (MR) images. Our proposed method consists of mainly three steps. First, a brain parenchymal region was segmented based on brain model matching. Second, a 3D fuzzy membership map for a cerebral cortical region was created by applying a fuzzy c-means (FCM) clustering algorithm to T1-weighted MR images. Third, cerebral cortical thickness was three- dimensionally measured on each cortical surface voxel by using a localized gradient vector trajectory in a fuzzy membership map. Spherical models with 3 mm artificial cortical regions, which were produced using three noise levels of 2%, 5%, and 10%, were employed to evaluate the proposed method. We also applied the proposed method to T1-weighted images obtained from 20 cases, i.e., 10 clinically diagnosed AD cases and 10 clinically normal (CN) subjects. The thicknesses of the 3 mm artificial cortical regions for spherical models with noise levels of 2%, 5%, and 10% were measured by the proposed method as 2.953 ± 0.342, 2.953 ± 0.342 and 2.952 ± 0.343 mm, respectively. Thus the mean thicknesses for the entire cerebral lobar region were 3.1 ± 0.4 mm for AD patients and 3.3 ± 0.4 mm for CN subjects, respectively (p < 0.05). The proposed method could be feasible for measuring the 3D cerebral cortical thickness on individual cortical surface voxels as an atrophy feature in AD.展开更多
This paper presents a fuzzy C- means clustering image segmentation algorithm based on particle swarm optimization, the method utilizes the strong search ability of particle swarm clustering search center. Because the ...This paper presents a fuzzy C- means clustering image segmentation algorithm based on particle swarm optimization, the method utilizes the strong search ability of particle swarm clustering search center. Because the search clustering center has small amount of calculation according to density, so it can greatly improve the calculation speed of fuzzy C- means algorithm. The experimental results show that, this method can make the fuzzy clustering to obviously improve the speed, so it can achieve fast image segmentation.展开更多
Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to i...Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to improve it. Thus, a KNN-based two-step FCM weighted (KTFW) algorithm for indoor positioning in wireless local area networks (WLAN) is presented in this paper. In KTFW algorithm, k reference points (RPs) chosen by KNN are clustered through FCM based on received signal strength (RSS) and location coordinates. The right clusters are chosen according to rules, so three sets of RPs are formed including the set of k RPs chosen by KNN and are given different weights. RPs supposed to have better contribution to positioning accuracy are given larger weights to improve the positioning accuracy. Simulation results indicate that KTFW generally outperforms KNN and its complexity is greatly reduced through providing initial clustering centers for FCM.展开更多
To enhance the segmentation performance and robustness of kernel weighted fuzzy local information C-means(KWFLICM) clustering for image segmentation in the presence of high noise, an improved KWFLICM algorithm aggrega...To enhance the segmentation performance and robustness of kernel weighted fuzzy local information C-means(KWFLICM) clustering for image segmentation in the presence of high noise, an improved KWFLICM algorithm aggregating neighborhood membership information is proposed. This algorithm firstly constructs a linear weighted membership function by combining the membership degrees of current pixel and its neighborhood pixels. Then it is normalized to meet the constraint that the sum of membership degree of pixel belonging to different classes is 1. In the end, normalized membership is used to update the clustering centers of KWFLICM algorithm. Experimental results show that the proposed adaptive KWFLICM(AKWFLICM) algorithm outperforms existing state of the art fuzzy clustering-related segmentation algorithms for image with high noise.展开更多
Purpose–The purpose of this paper is to consider the concept of Fuzzy Radial Basis Function Neural Networks with Information Granulation(IG-FRBFNN)and their optimization realized by means of the Multiobjective Partic...Purpose–The purpose of this paper is to consider the concept of Fuzzy Radial Basis Function Neural Networks with Information Granulation(IG-FRBFNN)and their optimization realized by means of the Multiobjective Particle Swarm Optimization(MOPSO).Design/methodology/approach–In fuzzy modeling,complexity,interpretability(or simplicity)as well as accuracy of the obtained model are essential design criteria.Since the performance of the IG-RBFNN model is directly affected by some parameters,such as the fuzzification coefficient used in the FCM,the number of rules and the orders of the polynomials in the consequent parts of the rules,the authors carry out both structural as well as parametric optimization of the network.A multi-objective Particle Swarm Optimization using Crowding Distance(MOPSO-CD)as well as O/WLS learning-based optimization are exploited to carry out the structural and parametric optimization of the model,respectively,while the optimization is of multiobjective character as it is aimed at the simultaneous minimization of complexity and maximization of accuracy.Findings–The performance of the proposed model is illustrated with the aid of three examples.The proposed optimization method leads to an accurate and highly interpretable fuzzy model.Originality/value–A MOPSO-CD as well as O/WLS learning-based optimization are exploited,respectively,to carry out the structural and parametric optimization of the model.As a result,the proposed methodology is interesting for designing an accurate and highly interpretable fuzzy model.展开更多
Progression of Alzheimer’s disease(AD)bears close proximity with the tissue loss in the medial temporal lobe(MTL)and enlargement of lateral ventricle(LV).The early stage of AD,mild cognitive impairment(MCI),can be tr...Progression of Alzheimer’s disease(AD)bears close proximity with the tissue loss in the medial temporal lobe(MTL)and enlargement of lateral ventricle(LV).The early stage of AD,mild cognitive impairment(MCI),can be traced by diagnosing brain MRI scans with advanced fuzzy c-means clustering algorithm that helps to take an appropriate intervention.In this paper,firstly the sparsity is initiated in clustering method that too rician noise is also incorporated for brain MR scans of AD subject.Secondly,a novel neighbor pixel constrained fuzzy c-means clustering algorithm is designed where topoloty-based selection of parsimonious neighbor pixels is automated.The adaptability in choice of neighbor pixel class outliers more justified object edge boundary which outperforms a dynamic cluster output.The proposed adaptive neighbor constrained deviation sparse variant fuzzy c-means clustering(AN_DsFCM)can withhold imposed sparsity and withstands rician noise at imposed sparse environment.This novel algorithm is applied for MRI of AD subjects and normative data is acquired to analyse clustering accuracy.The data processing pipeline of theoretically plausible proposition is elaborated in detail.The experimental results are compared with state-of-the-art fuzzy clustering methods for test MRI scans.Visual evaluation and statistical measures are studied to meet both image processing and clinical neurophysiology standards.Overall the performance of proposed AN_DsFCM is significantly better than other methods.展开更多
为了有效提高三维空间中无线传感器网络节点定位算法的效率,提出了一种基于简单Delaunay三角剖分的模糊信息节点定位方法(Fuzzy Information Node Localization on Delaunay Triangulation,FINL-DT),该方法在定位前先对网络中的锚节点实...为了有效提高三维空间中无线传感器网络节点定位算法的效率,提出了一种基于简单Delaunay三角剖分的模糊信息节点定位方法(Fuzzy Information Node Localization on Delaunay Triangulation,FINL-DT),该方法在定位前先对网络中的锚节点实现Delaunay三角剖分,然后通过测量各三角形中锚节点与未知节点的方向角和俯仰角实现节点定位。每一轮定位结束后,判断并更新无效锚节点的位置。网络中的节点被定位后充当二级锚节点辅助定位其他节点。通过实验仿真,与SLPM-FI算法和3D-ADAL算法相比,FINL-DT算法提高了节点定位精度,降低了网络能耗。展开更多
With the rapid development of Unmanned Aerial Vehicle(UAV)technology,change detection methods based on UAV images have been extensively studied.However,the imaging of UAV sensors is susceptible to environmental interf...With the rapid development of Unmanned Aerial Vehicle(UAV)technology,change detection methods based on UAV images have been extensively studied.However,the imaging of UAV sensors is susceptible to environmental interference,which leads to great differences of same object between UAV images.Overcoming the discrepancy difference between UAV images is crucial to improving the accuracy of change detection.To address this issue,a novel unsupervised change detection method based on structural consistency and the Generalized Fuzzy Local Information C-means Clustering Model(GFLICM)was proposed in this study.Within this method,the establishment of a graph-based structural consistency measure allowed for the detection of change information by comparing structure similarity between UAV images.The local variation coefficient was introduced and a new fuzzy factor was reconstructed,after which the GFLICM algorithm was used to analyze difference images.Finally,change detection results were analyzed qualitatively and quantitatively.To measure the feasibility and robustness of the proposed method,experiments were conducted using two data sets from the cities of Yangzhou and Nanjing.The experimental results show that the proposed method can improve the overall accuracy of change detection and reduce the false alarm rate when compared with other state-of-the-art change detection methods.展开更多
为了有效提高三维空间中无线传感器网络节点定位算法的效率,提出了一种基于虚拟分层的节点模糊信息定位方法(Nodes’Fuzzy Information Localization algorithm on Virtual Stratification,NFIL-VS),该方法在定位前对网络实现虚拟分层,...为了有效提高三维空间中无线传感器网络节点定位算法的效率,提出了一种基于虚拟分层的节点模糊信息定位方法(Nodes’Fuzzy Information Localization algorithm on Virtual Stratification,NFIL-VS),该方法在定位前对网络实现虚拟分层,分层后测量各平面上节点之间的方向角和俯仰角等模糊信息实现节点定位。每一轮定位结束后,判断并更新无效锚节点的位置。网络中的节点被定位后充当二级锚节点辅助定位其他节点。通过实验仿真,与SNLSFAMC算法和MANLFI算法相比,提出的NFIL-VS算法提高了节点定位精度,降低了网络能耗。展开更多
基金Supported by the National Natural Science Foundation of China (61074079)Shanghai Leading Academic Discipline Project (B054)
文摘For complex industrial processes with multiple operational conditions, it is important to develop effective monitoring algorithms to ensure the safety of production processes. This paper proposes a novel monitoring strategy based on fuzzy C-means. The high dimensional historical data are transferred to a low dimensional subspace spanned by locality preserving projection. Then the scores in the novel subspace are classified into several overlapped clusters, each representing an operational mode. The distance statistics of each cluster are integrated though the membership values into a novel BID (Bayesian inference distance) monitoring index. The efficiency and effectiveness of the proposed method are validated though the Tennessee Eastman benchmark process.
基金supported by the National Natural Science Foundation of China(6167138461703338)+2 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(2016JM6018)the Project of Science and Technology Foundationthe Fundamental Research Funds for the Central Universities(3102017OQD020)
文摘Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI segmentation method,which is based on fuzzy c-means(FCM) and DS theory, is proposed. Firstly, the average fusion method is used to reduce the uncertainty and the conflict information in the pictures. Then, the neighborhood information and the different influences of spatial location of neighborhood pixels are taken into consideration to handle the spatial information. Finally, the segmentation and the sensor data fusion are achieved by using the DS theory. The simulated images and the MRI images illustrate that our proposed method is more effective in image segmentation.
文摘As an effective image segmentation method, the standard fuzzy c-means (FCM) clustering algorithm is very sensitive to noise in images. Several modified FCM algorithms, using local spatial information, can overcome this problem to some degree. However, when the noise level in the image is high, these algorithms still cannot obtain satisfactory segmentation performance. In this paper, we introduce a non local spatial constraint term into the objective function of FCM and propose a fuzzy c- means clustering algorithm with non local spatial information (FCM_NLS). FCM_NLS can deal more effectively with the image noise and preserve geometrical edges in the image. Performance evaluation experiments on synthetic and real images, especially magnetic resonance (MR) images, show that FCM NLS is more robust than both the standard FCM and the modified FCM algorithms using local spatial information for noisy image segmentation.
文摘A novel active contour model is proposed, which incorporates local information distributions in a fuzzy energy function to effectively deal with the intensity inhomogeneity. Moreover, the proposed model is convex with respect to the variable which is used for extracting the contour. This makes the model independent on the initial condition and suitable for an automatic segmentation. Furthermore, the energy function is minimized in a computationally efficient way by calculating the fuzzy energy alterations directly. Experiments are carried out to prove the performance of the proposed model over some existing methods. The obtained results confirm the efficiency of the method.
文摘Our purpose in this study was to develop an automated method for measuring three-dimensional (3D) cerebral cortical thicknesses in patients with Alzheimer’s disease (AD) using magnetic resonance (MR) images. Our proposed method consists of mainly three steps. First, a brain parenchymal region was segmented based on brain model matching. Second, a 3D fuzzy membership map for a cerebral cortical region was created by applying a fuzzy c-means (FCM) clustering algorithm to T1-weighted MR images. Third, cerebral cortical thickness was three- dimensionally measured on each cortical surface voxel by using a localized gradient vector trajectory in a fuzzy membership map. Spherical models with 3 mm artificial cortical regions, which were produced using three noise levels of 2%, 5%, and 10%, were employed to evaluate the proposed method. We also applied the proposed method to T1-weighted images obtained from 20 cases, i.e., 10 clinically diagnosed AD cases and 10 clinically normal (CN) subjects. The thicknesses of the 3 mm artificial cortical regions for spherical models with noise levels of 2%, 5%, and 10% were measured by the proposed method as 2.953 ± 0.342, 2.953 ± 0.342 and 2.952 ± 0.343 mm, respectively. Thus the mean thicknesses for the entire cerebral lobar region were 3.1 ± 0.4 mm for AD patients and 3.3 ± 0.4 mm for CN subjects, respectively (p < 0.05). The proposed method could be feasible for measuring the 3D cerebral cortical thickness on individual cortical surface voxels as an atrophy feature in AD.
文摘This paper presents a fuzzy C- means clustering image segmentation algorithm based on particle swarm optimization, the method utilizes the strong search ability of particle swarm clustering search center. Because the search clustering center has small amount of calculation according to density, so it can greatly improve the calculation speed of fuzzy C- means algorithm. The experimental results show that, this method can make the fuzzy clustering to obviously improve the speed, so it can achieve fast image segmentation.
文摘Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to improve it. Thus, a KNN-based two-step FCM weighted (KTFW) algorithm for indoor positioning in wireless local area networks (WLAN) is presented in this paper. In KTFW algorithm, k reference points (RPs) chosen by KNN are clustered through FCM based on received signal strength (RSS) and location coordinates. The right clusters are chosen according to rules, so three sets of RPs are formed including the set of k RPs chosen by KNN and are given different weights. RPs supposed to have better contribution to positioning accuracy are given larger weights to improve the positioning accuracy. Simulation results indicate that KTFW generally outperforms KNN and its complexity is greatly reduced through providing initial clustering centers for FCM.
文摘To enhance the segmentation performance and robustness of kernel weighted fuzzy local information C-means(KWFLICM) clustering for image segmentation in the presence of high noise, an improved KWFLICM algorithm aggregating neighborhood membership information is proposed. This algorithm firstly constructs a linear weighted membership function by combining the membership degrees of current pixel and its neighborhood pixels. Then it is normalized to meet the constraint that the sum of membership degree of pixel belonging to different classes is 1. In the end, normalized membership is used to update the clustering centers of KWFLICM algorithm. Experimental results show that the proposed adaptive KWFLICM(AKWFLICM) algorithm outperforms existing state of the art fuzzy clustering-related segmentation algorithms for image with high noise.
基金This work was supported by National Research Foundation of Korea Grant funded by the Korean Government(NRF-2010-D00065)the Grant of the Korean Ministry of Education,Science and Technology(The Regional Core Research Program/Center of Healthcare Technology Development)the GRRC program of Gyeonggi province[GRRC SUWON 2011-B2,Center for U-city Security&Surveillance Technology].
文摘Purpose–The purpose of this paper is to consider the concept of Fuzzy Radial Basis Function Neural Networks with Information Granulation(IG-FRBFNN)and their optimization realized by means of the Multiobjective Particle Swarm Optimization(MOPSO).Design/methodology/approach–In fuzzy modeling,complexity,interpretability(or simplicity)as well as accuracy of the obtained model are essential design criteria.Since the performance of the IG-RBFNN model is directly affected by some parameters,such as the fuzzification coefficient used in the FCM,the number of rules and the orders of the polynomials in the consequent parts of the rules,the authors carry out both structural as well as parametric optimization of the network.A multi-objective Particle Swarm Optimization using Crowding Distance(MOPSO-CD)as well as O/WLS learning-based optimization are exploited to carry out the structural and parametric optimization of the model,respectively,while the optimization is of multiobjective character as it is aimed at the simultaneous minimization of complexity and maximization of accuracy.Findings–The performance of the proposed model is illustrated with the aid of three examples.The proposed optimization method leads to an accurate and highly interpretable fuzzy model.Originality/value–A MOPSO-CD as well as O/WLS learning-based optimization are exploited,respectively,to carry out the structural and parametric optimization of the model.As a result,the proposed methodology is interesting for designing an accurate and highly interpretable fuzzy model.
基金supported in part by Ministry of Electronics and Information Technology,Government of India under Sir Visvesvaraya PhD Scheme for Electronics and IT.
文摘Progression of Alzheimer’s disease(AD)bears close proximity with the tissue loss in the medial temporal lobe(MTL)and enlargement of lateral ventricle(LV).The early stage of AD,mild cognitive impairment(MCI),can be traced by diagnosing brain MRI scans with advanced fuzzy c-means clustering algorithm that helps to take an appropriate intervention.In this paper,firstly the sparsity is initiated in clustering method that too rician noise is also incorporated for brain MR scans of AD subject.Secondly,a novel neighbor pixel constrained fuzzy c-means clustering algorithm is designed where topoloty-based selection of parsimonious neighbor pixels is automated.The adaptability in choice of neighbor pixel class outliers more justified object edge boundary which outperforms a dynamic cluster output.The proposed adaptive neighbor constrained deviation sparse variant fuzzy c-means clustering(AN_DsFCM)can withhold imposed sparsity and withstands rician noise at imposed sparse environment.This novel algorithm is applied for MRI of AD subjects and normative data is acquired to analyse clustering accuracy.The data processing pipeline of theoretically plausible proposition is elaborated in detail.The experimental results are compared with state-of-the-art fuzzy clustering methods for test MRI scans.Visual evaluation and statistical measures are studied to meet both image processing and clinical neurophysiology standards.Overall the performance of proposed AN_DsFCM is significantly better than other methods.
文摘为了有效提高三维空间中无线传感器网络节点定位算法的效率,提出了一种基于简单Delaunay三角剖分的模糊信息节点定位方法(Fuzzy Information Node Localization on Delaunay Triangulation,FINL-DT),该方法在定位前先对网络中的锚节点实现Delaunay三角剖分,然后通过测量各三角形中锚节点与未知节点的方向角和俯仰角实现节点定位。每一轮定位结束后,判断并更新无效锚节点的位置。网络中的节点被定位后充当二级锚节点辅助定位其他节点。通过实验仿真,与SLPM-FI算法和3D-ADAL算法相比,FINL-DT算法提高了节点定位精度,降低了网络能耗。
基金National Natural Science Foundation of China(No.62101219)Natural Science Foundation of Jiangsu Province(Nos.BK20201026,BK20210921)+1 种基金Science Foundation of Jiangsu Normal University(No.19XSRX006)Open Research Fund of Jiangsu Key Laboratory of Resources and Environmental Information Engineering(No.JS202107)。
文摘With the rapid development of Unmanned Aerial Vehicle(UAV)technology,change detection methods based on UAV images have been extensively studied.However,the imaging of UAV sensors is susceptible to environmental interference,which leads to great differences of same object between UAV images.Overcoming the discrepancy difference between UAV images is crucial to improving the accuracy of change detection.To address this issue,a novel unsupervised change detection method based on structural consistency and the Generalized Fuzzy Local Information C-means Clustering Model(GFLICM)was proposed in this study.Within this method,the establishment of a graph-based structural consistency measure allowed for the detection of change information by comparing structure similarity between UAV images.The local variation coefficient was introduced and a new fuzzy factor was reconstructed,after which the GFLICM algorithm was used to analyze difference images.Finally,change detection results were analyzed qualitatively and quantitatively.To measure the feasibility and robustness of the proposed method,experiments were conducted using two data sets from the cities of Yangzhou and Nanjing.The experimental results show that the proposed method can improve the overall accuracy of change detection and reduce the false alarm rate when compared with other state-of-the-art change detection methods.
文摘为了有效提高三维空间中无线传感器网络节点定位算法的效率,提出了一种基于虚拟分层的节点模糊信息定位方法(Nodes’Fuzzy Information Localization algorithm on Virtual Stratification,NFIL-VS),该方法在定位前对网络实现虚拟分层,分层后测量各平面上节点之间的方向角和俯仰角等模糊信息实现节点定位。每一轮定位结束后,判断并更新无效锚节点的位置。网络中的节点被定位后充当二级锚节点辅助定位其他节点。通过实验仿真,与SNLSFAMC算法和MANLFI算法相比,提出的NFIL-VS算法提高了节点定位精度,降低了网络能耗。