期刊文献+
共找到103篇文章
< 1 2 6 >
每页显示 20 50 100
An Adaptive Neuro-Fuzzy Inference System to Improve Fractional Order Controller Performance
1
作者 N.Kanagaraj 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3213-3226,共14页
The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant... The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria. 展开更多
关键词 Adaptive neuro-fuzzy inference system(ANFIS) fuzzy logic controller fractional order control PID controller first order time delay system
下载PDF
Lithium-Ion Battery Pack Based on Fuzzy Logic Control Research on Multi-Layer Equilibrium Circuits
2
作者 Tiezhou Wu Yukan Zhang 《Energy Engineering》 EI 2024年第8期2231-2255,共25页
In order to solve the problem of inconsistent energy in the charging and discharging cycles of lithium-ion battery packs,a new multilayer equilibrium topology is designed in this paper.The structure adopts a hierarchi... In order to solve the problem of inconsistent energy in the charging and discharging cycles of lithium-ion battery packs,a new multilayer equilibrium topology is designed in this paper.The structure adopts a hierarchical structure design,which includes intra-group equilibrium,primary inter-group equilibrium and secondary inter-group equilibrium.This structure greatly increases the number of equilibrium paths for lithium-ion batteries,thus shortening the time required for equilibrium,and improving the overall efficiency.In terms of control strategy,fuzzy logic control(FLC)is chosen to control the size of the equilibrium current during the equilibrium process.We performed rigorous modeling and simulation of the proposed system by MATLAB and Simulink software.Experiments show that the multilayer equilibrium circuit structure greatly exceeds the traditional single-layer equilibrium circuit in terms of efficacy,specifically,the Li-ion battery equilibrium speed is improved by 12.71%in static equilibrium,14.48%in charge equilibrium,and 11.19%in discharge equilibrium.In addition,compared with the maximum value algorithm,the use of the FLC algorithm reduces the equalization time by about 3.27%and improves the energy transfer efficiency by about 66.49%under the stationary condition,which verifies the feasibility of the equalization scheme. 展开更多
关键词 Lithium-ion battery for new energy vehicles lithium-ion battery equilibrium fuzzy logic control
下载PDF
Enhanced Fuzzy Logic Control Model and Sliding Mode Based on Field Oriented Control of Induction Motor
3
作者 Alaa Tahhan Feyzullah Temurtaş 《World Journal of Engineering and Technology》 2024年第1期65-79,共15页
In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transfo... In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology. 展开更多
关键词 Induction Motor Vector Control fuzzy Logic Control Sliding Mode
下载PDF
A Sender-Initiated Fuzzy Logic Contrnol Method for Network Load Balancing
4
作者 Ming-Chang Huang 《Journal of Computer and Communications》 2024年第8期110-122,共13页
In this paper, a sender-initiated protocol is applied which uses fuzzy logic control method to improve computer networks performance by balancing loads among computers. This new model devises sender-initiated protocol... In this paper, a sender-initiated protocol is applied which uses fuzzy logic control method to improve computer networks performance by balancing loads among computers. This new model devises sender-initiated protocol for load transfer for load balancing. Groups are formed and every group has a node called a designated representative (DR). During load transferring processes, loads are transferred using the DR in each group to achieve load balancing purposes. The simulation results show that the performance of the protocol proposed is better than the compared conventional method. This protocol is more stable than the method without using the fuzzy logic control. 展开更多
关键词 Load Balancing fuzzy Logic Control Sender-Initiated
下载PDF
Genetic algorithm and particle swarm optimization tuned fuzzy PID controller on direct torque control of dual star induction motor 被引量:13
5
作者 BOUKHALFA Ghoulemallah BELKACEM Sebti +1 位作者 CHIKHI Abdesselem BENAGGOUNE Said 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1886-1896,共11页
This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different he... This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance. 展开更多
关键词 dual star induction motor drive direct torque control particle swarm optimization (PSO) fuzzy logic control genetic algorithms
下载PDF
ARTIFICIAL NEURAL NETWORK AND FUZZY LOGIC CONTROLLER FOR GTAW MODELING AND CONTROL 被引量:3
6
作者 Gao Xiangdong Faculty of Mechanical and Electrical Engineering,Guangdong University of Technology, Guangzhou 510090,China Huang Shisheng South China University of Technology 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第1期53-56,共4页
An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and c... An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately. 展开更多
关键词 Artificial neural network fuzzy logic control Weld pool depth Seamtracking
下载PDF
Fuzzy logic controller design with unevenly-distributed membership function for high performance chamber cooling system 被引量:2
7
作者 曹健鹏 Seok-Kwon Jeong Young-Mi Jung 《Journal of Central South University》 SCIE EI CAS 2014年第7期2684-2692,共9页
Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histo... Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histogram equalization and noise detection were performed to modify the evenly-distributed membership functions of error and error change rate into unevenly-distributed membership functions.Then,the experimental results with evenly and unevenly distributed membership functions were compared under the same outside environment conditions.The experimental results show that the steady-state error is reduced around 40% and the noise disturbance is rejected successfully even though noise range is 60% of the control precision range.The control precision is improved by reducing the steady-state error and the robustness is enhanced by rejecting noise disturbance through the fuzzy logic controller with unevenly-distributed membership function.Moreover,the system energy efficiency and lifetime of electronic expansion valve(EEV) installed in chamber cooling system are improved by adopting the unevenly-distributed membership function. 展开更多
关键词 chamber cooling system fuzzy logic controller unevenly-distributed membership function steady-state error reduction ROBUSTNESS variable speed refrigeration system
下载PDF
HYDRAULIC ACTIVE GUIDE ROLLER SYSTEM FOR HIGH-SPEED ELEVATOR BASED ON FUZZY CONTROLLER 被引量:1
8
作者 FENG Yonghui ZHANG Jianwu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第5期68-73,共6页
Increase of elevator speed brings about amplified vibrations of high-speed elevator. In order to reduce the horizontal vibrations of high-speed elevator, a new type of hydraulic active guide roller system based on fuz... Increase of elevator speed brings about amplified vibrations of high-speed elevator. In order to reduce the horizontal vibrations of high-speed elevator, a new type of hydraulic active guide roller system based on fuzzy logic controller is developed. First the working principle of the hydraulic guide system is introduced, then the dynamic model of the horizontal vibrations for elevator cage with active guide roller system and the mathematical model of the hydraulic system are given. A fuzzy logic controller for the hydraulic system is designed to control the hydraulic actuator. To improve the control performance, preview compensation for the controller is provided. Finally, simulation and experiments are executed to verify the hydraulic active guide roller system and the control strategy. Both the simulation and experimental results indicate that the hydraulic active guide roller system can reduce the horizontal vibrations of the elevator effectively and has better effects than the passive one, and the fuzzy logic controller with preview compensation can give superior control performance. 展开更多
关键词 High-speed elevator Horizontal vibrations Hydraulic active guide roller system fuzzy logic control
下载PDF
Design of a Fuzzy Logic Based Controller for Fluid Level Application 被引量:1
9
作者 Hina Shahid Sadia Murawwat +4 位作者 Intesar Ahmed Sana Naseer Rukhsar Fiaz Ayesha Afzaal Shumaila Rafiq 《World Journal of Engineering and Technology》 2016年第3期469-476,共9页
In industrial process control, fluid level control is one of the most basic aspects. Many control methods such as on-off, linear and PID (Proportional Integral Derivative) were developed time by time and used for prec... In industrial process control, fluid level control is one of the most basic aspects. Many control methods such as on-off, linear and PID (Proportional Integral Derivative) were developed time by time and used for precise controlling of fluid level. Due to flaws of PID controller in non-linear type processes such as inertial lag, time delay and time varying etc., there is a need of alternative design methodology that can be applied in both linear and non-linear systems and it can be execute with fuzzy concept. By using fuzzy logic, designer can realize lower development cost, superior feature and better end product. In this paper, level of fluid in tank is control by using fuzzy logic concept. For this purpose, a simulation system of fuzzy logic controller for fluid level control is designed using simulation packages of MATLAB software such as Fuzzy Logic Toolbox and Simulink. The designed fuzzy logic controller first takes information about inflow and outflow of fluid in tank than maintain the level of fluid in tank by controlling its output valve. In this paper, a controller is designed on five rules using two-input and one-output parameters. At the end, simulation results of fuzzy logic based controller are compared with classical PID controller and it shows that fuzzy logic controller has better stability, fast response and small overshoot. 展开更多
关键词 PID controller fuzzy Logic controller FIS MATLAB
下载PDF
Neuro-Fuzzy Based Interline Power Flow Controller for Real Time Power Flow Control in Multiline Power System 被引量:3
10
作者 A. Saraswathi S. Sutha 《Circuits and Systems》 2016年第9期2807-2820,共14页
This article investigates the power quality enhancement in power system using one of the most famous series converter based FACTS controller like IPFC (Interline Power Flow Controller) in Power Injection Model (PIM). ... This article investigates the power quality enhancement in power system using one of the most famous series converter based FACTS controller like IPFC (Interline Power Flow Controller) in Power Injection Model (PIM). The parameters of PIM are derived with help of the Newton-Raphson power flow algorithm. In general, a sample test power system without FACTs devices has generated more reactive power, decreased real power, more harmonics, small power factor and poor dynamic performance under line and load variations. In order to improve the real power, compensating the reactive power, proficient power factor and excellent load voltage regulation in the sample test power system, an IPFC is designed. The D-Q technique is utilized here to derive the reference current of the converter and its D.C link capacitor voltage is regulated. Also, the reference voltage of the inverter is arrived by park transformation technique and its load voltage is controlled. Here, a sample 230 KV test power system is taken for study. Further as the conventional PI controllers are designed at one nominal operating point they are not competent to respond satisfactorily in dynamic operating conditions. This can be circumvented by a Fuzzy and Neural network based IPFC and its detailed Simulink model is developed using MATLAB and the overall performance analysis is carried out under different operating state of affairs. 展开更多
关键词 FACTS controller fuzzy Logic controller Interline Power Flow controller Reactive Power Compensation (RPC) Voltage Stability
下载PDF
Load Frequency Control of Small Hydropower Plants Using One-Input Fuzzy PI Controller with Linear and Non-Linear Plant Model 被引量:2
11
作者 Derek Ajesam Asoh Edwin Nyuysever Mbinkar Albert Nouck Moutlen 《Smart Grid and Renewable Energy》 2022年第1期1-16,共16页
<span style="font-family:Verdana;">This study presents an intelligent approach for load frequency control (LFC) of small hydropower plants (SHPs). The approach which is based on fuzzy logic (FL), takes... <span style="font-family:Verdana;">This study presents an intelligent approach for load frequency control (LFC) of small hydropower plants (SHPs). The approach which is based on fuzzy logic (FL), takes into account the non-linearity of SHPs—something which is not possible using traditional controllers. Most intelligent methods use two-</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">input fuzzy controllers, but because such controllers are expensive, there is </span><span style="font-family:Verdana;">economic interest in the relatively cheaper single-input controllers. A n</span><span style="font-family:Verdana;">on-</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">linear control model based on one-input fuzzy logic PI (FLPI) controller was developed and applied to control the non-linear SHP. Using MATLAB/Si</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">mulink SimScape, the SHP was simulated with linear and non-linear plant models. The performance of the FLPI controller was investigated and compared with that of the conventional PI/PID controller. Results show that the settling time for the FLPI controller is about 8 times shorter;while the overshoot is about 15 times smaller compared to the conventional PI/PID controller. Therefore, the FLPI controller performs better than the conventional PI/PID controller not only in meeting the LFC control objective but also in ensuring increased dynamic stability of SHPs.</span> 展开更多
关键词 Small Hydropower Plant Linear and Non-Linear Model Load Frequency Control Non-Linear Control fuzzy Logic controller Renewable Energy
下载PDF
Maximum Power Point Tracker Controller Using Fuzzy Logic Control with Battery Load for Photovoltaics Systems 被引量:1
12
作者 Mazen Yeselam Baramadeh Mohamed Abd Almonem Abouelela Saad Mubarak Alghuwainem 《Smart Grid and Renewable Energy》 2021年第10期163-181,共19页
<span style="font-family:Verdana;">The target of this paper is to model a Maximum Power Point Tracker (MPPT) using a Fuzzy Logic Control (FLC) algorithm and to investigate its behavior with a battery l... <span style="font-family:Verdana;">The target of this paper is to model a Maximum Power Point Tracker (MPPT) using a Fuzzy Logic Control (FLC) algorithm and to investigate its behavior with a battery load. The advantage of this study over other studies in this field is that it considers a battery load rather than the commonly used</span><span></span><span></span><b><span><span></span><span></span> </span></b><span style="font-family:Verdana;">resistive load especially when we deal with the relationship between MPPT and system load. The system is about 60</span><span style="font-family:""> </span><span style="font-family:Verdana;">kW which </span><span style="font-family:Verdana;">is </span><span style="font-family:Verdana;">simulated under various environmental conditions by Matlab/Simulink program. For this type of non-linear application, FLC naturally offers a superior controller for </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">real load case. The artificial intelligence approach also benefits from this method for overcoming the complexity of nonlinear system modelling. The results show that FLC provides high performance for MPPT of PV system with battery load due to its low settling time and limited oscillation around the steady state value. These are</span><span style="font-family:""> </span><span style="font-family:Verdana;">assistant factors for increasing battery life.</span> 展开更多
关键词 MPPT controller fuzzy Logic Control PV System Matlab Simulink
下载PDF
Fuzzy logic controller implementation on a microbial electrolysis cell for biohydrogen production and storage
13
作者 Gabriel Khew Mun Hong Mohd Azlan Hussain Ahmad Khairi Abdul Wahab 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第12期149-159,共11页
This work presents the implementation of fuzzy logic control(FLC) on a microbial electrolysis cell(MEC).Hydrogen has been touted as a potential alternative source of energy to the depleting fossil fuels. MEC is one of... This work presents the implementation of fuzzy logic control(FLC) on a microbial electrolysis cell(MEC).Hydrogen has been touted as a potential alternative source of energy to the depleting fossil fuels. MEC is one of the most extensively studied method of hydrogen production. The utilization of biowaste as its substrate by MEC promotes the waste to energy initiative. The hydrogen production within the MEC system, which involves microbial interaction contributes to the system's nonlinearity. Taking into account of the high complexity of MEC system, a precise process control system is required to ensure a wellcontrolled biohydrogen production flow rate and storage application inside a tank. Proportionalderivative-integral(PID) controller has been one of the pioneer control loop mechanism. However, it lacks the capability to adapt properly in the presence of disturbance. An advanced process control mechanism such as the FLC has proven to be a better solution to be implemented on a nonlinear system due to its similarity in human-natured thinking. The performance of the FLC has been evaluated based on its implementation on the MEC system through various control schemes progressively. Similar evaluations include the performance of Proportional-Integral(PI) and PID controller for comparison purposes. The tracking capability of FLC is also accessed against another advanced controller that is the model predictive controller(MPC). One of the key findings in this work is that the FLC resulted in a desirable hydrogen output via MEC over the PI and PID controller in terms of shorter settling time and lesser overshoot. 展开更多
关键词 fuzzy logic control Process control NONLINEAR Microbial electrolysis cell Renewable energy HYDROGEN
下载PDF
A Fuzzy Logical MPPT Control Strategy for PMSG Wind Generation Systems
14
作者 Xing-Peng Li Wen-Lu Fu +2 位作者 Qing-Jun Shi Jian-Bing Xu Quan-Yuan Jiang 《Journal of Electronic Science and Technology》 CAS 2013年第1期72-77,共6页
Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the ste... Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the step size of HCS method is constant so that it cannot consider both steady-state response and dynamic response. A fuzzy logical control (FLC) algorithm is proposed to solve this problem in this paper, which can track the maximum power point (MPP) quickly and smoothly. To evaluate MPPT algorithms, four performance indices are also proposed in this paper. They are the energy captured by wind turbine, the maximum power-point tracking time when wind speed changes slowly, the fluctuation magnitude of real power during steady state, and the energy captured by wind turbine when wind speed changes fast. Three cases are designed and simulated in MATLAB/Simulink respectively. The comparison of the three MPPT strategies concludes that the proposed fuzzy logical control algorithm is more superior to the conventional HCS algorithms. 展开更多
关键词 fuzzy logical control hill climbing search maximum power point tracking permanent magnet synchronous generator wind generation system.
下载PDF
A tunable fuzzy logic controller for the vehicle semi-active suspension system
15
作者 方子帆 DENG +1 位作者 Zhaoxiang 《Journal of Chongqing University》 CAS 2002年第2期16-19,共4页
On the basis of analyzing the system constitution of vehicle semi-active suspension, a 4-DOF (degree of freedom) dynamic model is established. A tunable fuzzy logic controller is designed by using without quantificati... On the basis of analyzing the system constitution of vehicle semi-active suspension, a 4-DOF (degree of freedom) dynamic model is established. A tunable fuzzy logic controller is designed by using without quantification method and taking into account the uncertainty, nonlinearity and complexity of parameters for a vehicle suspension system. Simulation to test the performance of this controller is performed under random excitations and definite disturbances of a C grade road, and the effects of time delay and changes of system parameters on the vehicle suspension system are researched. The numerical simulation shows that the performance of the designed tunable fuzzy logic controller is effective, stable and reliable. 展开更多
关键词 VEHICLE semi-active suspension system fuzzy logic control SIMULATION
下载PDF
Application of Fuzzy Logic Controller for Development of Control Strategy in PHEV
16
作者 Maged N.F. Nashed Said Wahsh +1 位作者 Hamed Galal Tarak Dakrory 《Computer Technology and Application》 2012年第1期1-7,共7页
In this paper, implantation of fuzzy logic controller for parallel hybrid electric vehicles (PHEV) is presented. In PHEV the required torque is generated by a combination of internal-combustion engine (ICE) and an... In this paper, implantation of fuzzy logic controller for parallel hybrid electric vehicles (PHEV) is presented. In PHEV the required torque is generated by a combination of internal-combustion engine (ICE) and an electric motor. The controller simulated using the SIMULINK/MATLAB package. The controller is designed based on the desired speed for driving and the state of speed error. In the other hand, performance of PHEV and ICE under different road cycle is given. The hardware setup is done for electric propulsion system; the system contains the induction motor, the three phase IGBT inverter with control circuit using microcontroller. The closed loop control system used a DC permanent generator whose output voltage is related to motor speed. Comparison between simulation and experimental results show accurate matching. 展开更多
关键词 Hybrid electric vehicles-induction motor internal combustion engine fuzzy logic control.
下载PDF
Comparative Analysis between Conventional PI, Fuzzy Logic and Artificial Neural Network Based Speed Controllers of Induction Motor with Considering Core Loss and Stray Load Loss
17
作者 Md. Rifat Hazari Effat Jahan +1 位作者 Mohammad Abdul Mannan Junji Tamura 《Journal of Mechanics Engineering and Automation》 2017年第1期50-57,共8页
Most of the controllers of IM (induction motor) for industrial applications have been designed based on PI controller without consideration of CL (core loss) and SLL (stray load loss). To get the precise perform... Most of the controllers of IM (induction motor) for industrial applications have been designed based on PI controller without consideration of CL (core loss) and SLL (stray load loss). To get the precise performances of torque as well as rotor speed and flux, the above mentioned losses should be considered. Conventional PI controller has overshoot effect at the transient period of the speed response curve. On the other hand, fuzzy logic and ANN (artificial neural network) based controllers can minimize the overshoot effect at the transient period because they have the abilities to deal with the nonlinear systems. In this paper, a comparative analysis is done between PI, fuzzy logic and ANN based speed controllers to find the suitable control strategy for IM with consideration of CL and SLL. The simulation analysis is done by using Matlab/Simulink software. The simulation results show that the fuzzy logic based speed controller gives better responses than ANN and conventional PI based speed controllers in terms of rotor speed, electromagnetic torque and rotor flux of IM. 展开更多
关键词 Core loss stray load loss PI controller fuzzy logic controller artificial neural network controller
下载PDF
Hybrid Fuzzy Controller Based Frequency Regulation in Restructured Power System
18
作者 P. Anitha P. Subburaj 《Circuits and Systems》 2016年第6期759-770,共12页
This paper discusses the implementation of Load Frequency Control (LFC) in restructured power system using Hybrid Fuzzy controller. The formulation of LFC in open energy market is much more challenging;hence it needs ... This paper discusses the implementation of Load Frequency Control (LFC) in restructured power system using Hybrid Fuzzy controller. The formulation of LFC in open energy market is much more challenging;hence it needs an intelligent controller to adapt the changes imposed by the dynamics of restructured bilateral contracts. Fuzzy Logic Control deals well with uncertainty and indistinctness while Particle Swarm Optimization (PSO) is a well-known optimization tool. Abovementioned techniques are combined and called as Hybrid Fuzzy to improve the dynamic performance of the system. Frequency control of restructured system has been achieved by automatic Membership Function (MF) tuned fuzzy logic controller. The parameters defining membership function has been tuned and updated from time to time using Particle Swarm Optimization (PSO). The robustness of the proposed hybrid fuzzy controller has been compared with conventional fuzzy logic controller using performance measures like overshoot and settling time following a step load perturbation. The motivation for using membership function tuning using PSO is to show the behavior of the controller for a wide range of system parameters and load changes. Error based analysis with parametric uncertainties and load changes is tested on a two-area restructured power system. 展开更多
关键词 fuzzy Logic controller Membership Function Particle Swarm Optimization Load Frequency Control Bilateral Market
下载PDF
A New Fully Differential Adaptive CMOS Line Driver Using Fuzzy Controller Suitable for ADSL Modems
19
作者 Ali Dadashi Yngvar Berg Omid Mirmotahari 《Circuits and Systems》 2016年第8期1307-1323,共17页
In this paper, a new principle for an adaptive line driver using Fuzzy logic is presented. This type of line driver can adapt its output impedance and gain, automatically to the applied load using a fuzzy logic contro... In this paper, a new principle for an adaptive line driver using Fuzzy logic is presented. This type of line driver can adapt its output impedance and gain, automatically to the applied load using a fuzzy logic controller (FLC). This results in automatically corrected output impedance for different cables with terminations. Also, the line driver output impedance and gain become insensitive to process and line variations. As an example, a line driver for ADSL application has been designed. The circuit operates from a 3.3 v in a 0.35 um standard CMOS technology. The power consumption of FLC is about 1 mW. The circuit dissipates 106 mW and exhibits a -62 dB THD for a 3.2-Vpp signal at 5 MHz across a 75 ohms Load. It has a relatively high -3 dB bandwidth (240 MHz) with good phase margin of about 67 degrees in a 10 pF load capacitor. 展开更多
关键词 fuzzy Logic controller (FLC) ADSL Modem Adaptive Line Driver Folded Cascode Power Supply Noise Class A/B
下载PDF
Accurate Reactive Power Controller and Power Factor Correction Using Fuzzy Logic
20
作者 Muhammad M.A.S. Mahmoud 《Journal of Energy and Power Engineering》 2013年第6期1163-1171,共9页
This paper presents the use of fuzzy logic technique to control the reactive power of load and hence improve the source power factor. A shunt compensator is proposed, which consists of a voltage controlled reactor by ... This paper presents the use of fuzzy logic technique to control the reactive power of load and hence improve the source power factor. A shunt compensator is proposed, which consists of a voltage controlled reactor by full-wave thyristor bridge in parallel with a capacitor. The proposed voltage control technique composed of two independent fuzzy controllers, primary and secondary. The PFC (primary fuzzy controller) is designed based on linearization method to introduce to the network the nearest value of reactive power (VAR) required to correct the power factor. The SFC (secondary fuzzy controller) is designed to achieve accurate compensation for the required VAR to achieve the pre-set power factor value. Simulations for 15 different practical study cases are presented to evaluate the performance of the controller, and the results show how the designed controller is fast and accurate. Harmonics analyses are carried out up to the 13th harmonic to determine the requirement of harmonics filter. 展开更多
关键词 Power systems reactive power power factor fuzzy logic control.
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部