In this paper, we consider multiobjective two-person zero-sum games with vector payoffs and vector fuzzy payoffs. We translate such games into the corresponding multiobjective programming problems and introduce the pe...In this paper, we consider multiobjective two-person zero-sum games with vector payoffs and vector fuzzy payoffs. We translate such games into the corresponding multiobjective programming problems and introduce the pessimistic Pareto optimal solution concept by assuming that a player supposes the opponent adopts the most disadvantage strategy for the self. It is shown that any pessimistic Pareto optimal solution can be obtained on the basis of linear programming techniques even if the membership functions for the objective functions are nonlinear. Moreover, we propose interactive algorithms based on the bisection method to obtain a pessimistic compromise solution from among the set of all pessimistic Pareto optimal solutions. In order to show the efficiency of the proposed method, we illustrate interactive processes of an application to a vegetable shipment problem.展开更多
Group decision making plays an important role in various fields of management decision and economics. In this paper, we develop two methods for hesitant fuzzy multiple criteria group decision making with group consens...Group decision making plays an important role in various fields of management decision and economics. In this paper, we develop two methods for hesitant fuzzy multiple criteria group decision making with group consensus in which all the experts use hesitant fuzzy decision matrices (HFDMs) to express their preferences. The aim of this paper is to present two novel consensus models applied in different group decision making situations, which are composed of consensus checking processes, consensus-reaching processes, and selection processes. All the experts make their own judgments on each alternative over multiple criteria by hesitant fuzzy sets, and then the aggregation of each hesitant fuzzy set under each criterion is calculated by the aggregation operators. Furthermore, we can calculate the distance between any two aggregations of hesitant fuzzy sets, based on which the deviation between any two experts is yielded. After introducing the consensus measure, we develop two kinds of consensus-reaching procedures and then propose two step-by-step algorithms for hesitant fuzzy multiple criteria group decision making. A numerical example concerning the selection of selling ways about 'Trade-Ins' for Apple Inc. is provided to illustrate and verify the developed approaches. In this example, the methods which aim to reach a high consensus of all the experts before the selection process can avoid some experts' preference values being too high or too low. After modifying the previous preference information by using our consensus measures, the result of the selection process is much more reasonable.展开更多
文摘In this paper, we consider multiobjective two-person zero-sum games with vector payoffs and vector fuzzy payoffs. We translate such games into the corresponding multiobjective programming problems and introduce the pessimistic Pareto optimal solution concept by assuming that a player supposes the opponent adopts the most disadvantage strategy for the self. It is shown that any pessimistic Pareto optimal solution can be obtained on the basis of linear programming techniques even if the membership functions for the objective functions are nonlinear. Moreover, we propose interactive algorithms based on the bisection method to obtain a pessimistic compromise solution from among the set of all pessimistic Pareto optimal solutions. In order to show the efficiency of the proposed method, we illustrate interactive processes of an application to a vegetable shipment problem.
基金Project supported by the National Natural Science Foundation of China (Nos. 61273209, 71501135, 71571123, and 71532007)
文摘Group decision making plays an important role in various fields of management decision and economics. In this paper, we develop two methods for hesitant fuzzy multiple criteria group decision making with group consensus in which all the experts use hesitant fuzzy decision matrices (HFDMs) to express their preferences. The aim of this paper is to present two novel consensus models applied in different group decision making situations, which are composed of consensus checking processes, consensus-reaching processes, and selection processes. All the experts make their own judgments on each alternative over multiple criteria by hesitant fuzzy sets, and then the aggregation of each hesitant fuzzy set under each criterion is calculated by the aggregation operators. Furthermore, we can calculate the distance between any two aggregations of hesitant fuzzy sets, based on which the deviation between any two experts is yielded. After introducing the consensus measure, we develop two kinds of consensus-reaching procedures and then propose two step-by-step algorithms for hesitant fuzzy multiple criteria group decision making. A numerical example concerning the selection of selling ways about 'Trade-Ins' for Apple Inc. is provided to illustrate and verify the developed approaches. In this example, the methods which aim to reach a high consensus of all the experts before the selection process can avoid some experts' preference values being too high or too low. After modifying the previous preference information by using our consensus measures, the result of the selection process is much more reasonable.