A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming probl...A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.展开更多
The objective of the present study is to develop the irrigation planning model and to apply the same in the form of Two-Phase Multi Objective Fuzzy Linear Programming (TPMOFLP) approach for crop planning in command ar...The objective of the present study is to develop the irrigation planning model and to apply the same in the form of Two-Phase Multi Objective Fuzzy Linear Programming (TPMOFLP) approach for crop planning in command area of Jayakwadi Project Stage I, Maharashtra State, India. The development of TPMOFLP model is on the basis of various Linear Programming (LP) models and Multi Objective Fuzzy Linear Programming (MOFLP) models, these models have been applied for maximization of the Net Benefits (NB), Crop production (CP), Employment Generation (EG) and Manure Utilization (MU) respectively. The significant increase in the value of level of satisfaction (λ) has been found from 0.58 to 0.65 by using the TPMOFLP approach as compare to that of MOFLP model based on maxmin approach. The two-phase approach solution provides NB = 1503.56 Million Rupees, CP = 335729.30 Tons, EG = 29.74 Million Man days and MU = 160233.70 Tons respectively. The proposed model will be helpful for the Decision Maker (DM) to take a decision under conflicting situation while planning for different conflicting objectives simultaneously and has potential to find out an integrated irrigation planning with prime consideration for economic, social and environmental issue.展开更多
In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single...In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single objective function from the fuzzy multi-objective linear programming problems. At first, a numerical example of solving fuzzy multi-objective linear programming problem has been provided to validate the maximum risk reduction by the proposed method. The proposed method has been applied to assess the risk of damage due to natural calamities like flood, cyclone, sidor, and storms at the coastal areas in Bangladesh. The proposed method of solving the fuzzy multi-objective linear programming problems by the statistical method has been compared with the Chandra Sen’s method. The numerical results show that the proposed method maximizes the risk reduction capacity better than Chandra Sen’s method.展开更多
This paper is comprised of the modeling and optimization of a multi objective linear programming problem in fuzzy environment in which some goals are fractional and some are linear. Here, we present a new approach for...This paper is comprised of the modeling and optimization of a multi objective linear programming problem in fuzzy environment in which some goals are fractional and some are linear. Here, we present a new approach for its solution by using α-cut of fuzzy numbers. In this proposed method, we first define membership function for goals by introducing non-deviational variables for each of objective functions with effective use of α-cut intervals to deal with uncertain parameters being represented by fuzzy numbers. In the optimization process the under deviational variables are minimized for finding a most satisfactory solution. The developed method has also been implemented on a problem for illustration and comparison.展开更多
In this paper, at first, the single input rule modules(SIRMs) dynamically connected fuzzy inference model is used to stabilize a double inverted pendulum system. Then, a multiobjective particle swarm optimization(MOPS...In this paper, at first, the single input rule modules(SIRMs) dynamically connected fuzzy inference model is used to stabilize a double inverted pendulum system. Then, a multiobjective particle swarm optimization(MOPSO) is implemented to optimize the fuzzy controller parameters in order to decrease the distance error of the cart and summation of the angle errors of the pendulums, simultaneously. The feasibility and efficiency of the proposed Pareto front is assessed in comparison with results reported in literature and obtained from other algorithms.Finally, the Java programming with applets is utilized to simulate the stability of the nonlinear system and explain the internetbased control.展开更多
In the present study the MOFLP models have been developed for the optimal cropping pattern planning which maximizes the four objectives such as Net Benefits (NB), Crop Production (CP), Employment Generation (EG) and M...In the present study the MOFLP models have been developed for the optimal cropping pattern planning which maximizes the four objectives such as Net Benefits (NB), Crop Production (CP), Employment Generation (EG) and Manure Utilization (MU) under conflicting situation and also, for maximization of Releases for Irrigation (RI) and Releases for Power (RP) simultaneously under uncertainty by considering the fuzziness in the objective functions. The developed models have been applied using the LINGO 13 (Language for Interactive General Optimization) optimization software to the case study of the Jayakwadi Project Stage-II across Sindhphana River, in the State of Maharashtra India. The various constraints have been taken into consideration like sowing area, affinity to crop, labour availability, manure availability, water availability for optimal cropping pattern planning. Similarly constraints to find the optimal reservoir operating policy are releases for power and turbine capacity, irrigation demand, reservoir storage capacity, reservoir storage continuity. The level of satisfaction for a compromised solution of optimal cropping pattern planning for four conflicting objectives under fuzzy environment is worked out to be λ = 0.68. The MOFLP compromised solution provides NB = 1088.46 (Million Rupees), CP = 241003 (Tons), EG = 23.13 (Million Man days) and MU = 111454.70 (Tons) respectively. The compromised solution for optimal operation of multi objective reservoir yields the level of satisfaction (λ) = 0.533 for maximizing the releases for irrigation and power simultaneously by satisfying the constraint of the system under consideration. The compromised solution provides the optimal releases, i.e. RI = 348.670 Mm3 and RP = 234.285 Mm3 respectively.展开更多
In real world decision making problems, the decision maker has to often optimize more than one objective, which might be conflicting in nature. Also, it is not always possible to find the exact values of the input dat...In real world decision making problems, the decision maker has to often optimize more than one objective, which might be conflicting in nature. Also, it is not always possible to find the exact values of the input data and related parameters due to incomplete or unavailable information. This work aims at developing a model that solves a multi objective distribution programming problem involving imprecise available supply, forecast demand, budget and unit cost/ profit coefficients with triangular possibility distributions. This algorithm aims to simultaneously minimize cost and maximize profit with reference to available supply constraint at each source, forecast demand constraint at each destination and budget constraint. An example is given to demonstrate the functioning of this algorithm.展开更多
This paper presents a modified method to solve multi-objective nonlinear programming problems with fuzzy parameters in its objective functions and these fuzzy parameters are characterized by fuzzy numbers. The modifie...This paper presents a modified method to solve multi-objective nonlinear programming problems with fuzzy parameters in its objective functions and these fuzzy parameters are characterized by fuzzy numbers. The modified method is based on normalized trade-off weights. The obtained stability set corresponding to α-Pareto optimal solution, using our method, is investigated. Moreover, an algorithm for obtaining any subset of the parametric space which has the same corresponding α-Pareto optimal solution is presented. Finally, a numerical example to illustrate our method is also given.展开更多
The objective of the paper is to deal with a kind of possibilistic linear programming (PLP) problem involving multiple objectives of conflicting nature. In particular, we have considered a multi objective linear progr...The objective of the paper is to deal with a kind of possibilistic linear programming (PLP) problem involving multiple objectives of conflicting nature. In particular, we have considered a multi objective linear programming (MOLP) problem whose objective is to simultaneously minimize cost and maximize profit in a supply chain where cost and profit coefficients, and related parameters such as available supply, forecast demand and budget are fuzzy with trapezoidal fuzzy numbers. An example is given to illustrate the strategy used to solve the aforesaid PLP problem.展开更多
Increasing demand for water from all sectors presents a challenge for policy makers to improve water allocation policies for storage reservoirs. In addition, there are many other organisms and species present in river...Increasing demand for water from all sectors presents a challenge for policy makers to improve water allocation policies for storage reservoirs. In addition, there are many other organisms and species present in river waters that also require water for their survival. Due to the lack of awareness many times the minimum required quantity and quality of water for river ecosystem is not made available at downstream of storage reservoirs. So, a sustainable approach is required in reservoir operations to maintain the river ecosystem with environmental flow while meeting the other demands. Multi-objective, multi-reservoir operation model developed with Python programming using Fuzzy Linear Programing method incorporating environmental flow requirement of river is presented in this paper. Objective of maximization of irrigation release is considered for first run. In second run maximization of releases for hydropower generation is considered as objective. Further both objectives are fuzzified by incorporating linear membership function and solved to maximize fuzzified objective function simultaneously by maximizing satisfaction level indicator (λ). The optimal reservoir operation policy is presented considering constraints including Irrigation release, Turbine release, Reservoir storage, Environmental flow release and hydrologic continuity. Model applied for multi-reservoir system consists of four reservoirs, i.e., Jayakwadi Stage-I Reservoir (R1), Jayakwadi Stage-II Reservoir (R2), Yeldari Reservoir (R3), Siddheshwar Reservoir (R4) in Godavari River sub-basin from Marathwada region of Maharashtra State, India.展开更多
This paper presents a general solution procedure and an interactive fuzzy satisfying method for a kind of fuzzy multi-objective linear programming-problems based on interval valued fuzzy sets. Firstly, a fuzzy set of ...This paper presents a general solution procedure and an interactive fuzzy satisfying method for a kind of fuzzy multi-objective linear programming-problems based on interval valued fuzzy sets. Firstly, a fuzzy set of the fuzzy solutions, which can be focused on providing complete information for the final decision, can be obtained by the proposed tolerance analysis of a non-dominated set. Secondly, the satisfying solution for the decisionmaker can be derived from Pareto optimal solutions by updating the current reference membership levels on the basis of the current levels of the membership functions together with the trade-off rates between the membership functions.展开更多
To aim at the variables fuzzyness widely existing in the production planning system, the paper discusses the production planning fuzzy multi objective linear programming model with fuzzy variables, and turns it int...To aim at the variables fuzzyness widely existing in the production planning system, the paper discusses the production planning fuzzy multi objective linear programming model with fuzzy variables, and turns it into two level multi objective linear programming problem by applying a partial order method defining the order of fuzzy numbers. finally, the paper gives its solving method.展开更多
In presented fuzzy multi-attribute decision-making (FMADM) problems, the information about attribute weights is interval numbers and the decision maker (DM) has fuzzy complementary preference relation on alternati...In presented fuzzy multi-attribute decision-making (FMADM) problems, the information about attribute weights is interval numbers and the decision maker (DM) has fuzzy complementary preference relation on alternatives. Firstly, the decision-making information based on the subjective preference information in the form of the fuzzy complementary judgment matrix is uniform by using a translation function. Then an objective programming model is established. Attribute weights are obtained by solving the model, thus the fuzzy overall values of alternatives are derived by using the additive weighting method. Secondly, the ranking approach of alternatives is proposed based on the degree of similarity between the fuzzy positive ideal solution of alternatives (FPISA) and the fuzzy overall values. The method can sufficiently utilize the objective information of alternatives and meet the subjective requirements of the DM as much as possible. It is easy to be operated and implemented on a computer. Finally, the proposed method is applied to the project evaluation in the venture investment.展开更多
This paper first applies the fuzzy set theory to multi-objective semi-definite program-ming (MSDP), and proposes the fuzzy multi-objective semi-definite programming (FMSDP) model whose optimal efficient solution i...This paper first applies the fuzzy set theory to multi-objective semi-definite program-ming (MSDP), and proposes the fuzzy multi-objective semi-definite programming (FMSDP) model whose optimal efficient solution is defined for the first time, too. By constructing a membership function, the FMSDP is translated to the MSDP. Then we prove that the optimal efficient solution of FMSDP is consistent with the efficient solution of MSDP and present the optimality condition about these programming. At last, we give an algorithm for FMSDP by introducing a new membership function and a series of transformation.展开更多
The objective of this paper is to develop the irrigation planning model and to apply the same in the form of Multi Objective Fuzzy Linear Programming (MOFLP) approach for crop planning in command area of Jayakwadi Pro...The objective of this paper is to develop the irrigation planning model and to apply the same in the form of Multi Objective Fuzzy Linear Programming (MOFLP) approach for crop planning in command area of Jayakwadi Project Stage I, Maharashtra State, India. To formulate MOFLP model various Linear Programming (LP) models are developed to optimize the Net Benefits (NB), Crop/Yield Production (YP), Employment Generation (EG) and Manure Utilization (MU) for which the objective function and constraints are crisp in nature. From the results of these LP models the linear membership function for each individual objective function has been developed. Considering the decision makers satisfaction level (λ), all the four objectives are maximized simultaneously. The results of the MOFLP and LP are compared. The MOFLP model concentrates on satisfying four objectives simultaneously. The present model will be helpful for the decision maker to take decision under conflicting situation when planning for different objectives simultaneously. The degree of satisfaction λ, works out to be 0.58. Compromised solution provides Net Benefits 1503.73 Million Rupees, Crop Production 319563.50 Tons, Employment Generation/Labour Requirement 29.74 Million Man days and Manure Utilization 154506.50 Tons respectively.展开更多
文摘A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.
文摘The objective of the present study is to develop the irrigation planning model and to apply the same in the form of Two-Phase Multi Objective Fuzzy Linear Programming (TPMOFLP) approach for crop planning in command area of Jayakwadi Project Stage I, Maharashtra State, India. The development of TPMOFLP model is on the basis of various Linear Programming (LP) models and Multi Objective Fuzzy Linear Programming (MOFLP) models, these models have been applied for maximization of the Net Benefits (NB), Crop production (CP), Employment Generation (EG) and Manure Utilization (MU) respectively. The significant increase in the value of level of satisfaction (λ) has been found from 0.58 to 0.65 by using the TPMOFLP approach as compare to that of MOFLP model based on maxmin approach. The two-phase approach solution provides NB = 1503.56 Million Rupees, CP = 335729.30 Tons, EG = 29.74 Million Man days and MU = 160233.70 Tons respectively. The proposed model will be helpful for the Decision Maker (DM) to take a decision under conflicting situation while planning for different conflicting objectives simultaneously and has potential to find out an integrated irrigation planning with prime consideration for economic, social and environmental issue.
文摘In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single objective function from the fuzzy multi-objective linear programming problems. At first, a numerical example of solving fuzzy multi-objective linear programming problem has been provided to validate the maximum risk reduction by the proposed method. The proposed method has been applied to assess the risk of damage due to natural calamities like flood, cyclone, sidor, and storms at the coastal areas in Bangladesh. The proposed method of solving the fuzzy multi-objective linear programming problems by the statistical method has been compared with the Chandra Sen’s method. The numerical results show that the proposed method maximizes the risk reduction capacity better than Chandra Sen’s method.
文摘This paper is comprised of the modeling and optimization of a multi objective linear programming problem in fuzzy environment in which some goals are fractional and some are linear. Here, we present a new approach for its solution by using α-cut of fuzzy numbers. In this proposed method, we first define membership function for goals by introducing non-deviational variables for each of objective functions with effective use of α-cut intervals to deal with uncertain parameters being represented by fuzzy numbers. In the optimization process the under deviational variables are minimized for finding a most satisfactory solution. The developed method has also been implemented on a problem for illustration and comparison.
文摘In this paper, at first, the single input rule modules(SIRMs) dynamically connected fuzzy inference model is used to stabilize a double inverted pendulum system. Then, a multiobjective particle swarm optimization(MOPSO) is implemented to optimize the fuzzy controller parameters in order to decrease the distance error of the cart and summation of the angle errors of the pendulums, simultaneously. The feasibility and efficiency of the proposed Pareto front is assessed in comparison with results reported in literature and obtained from other algorithms.Finally, the Java programming with applets is utilized to simulate the stability of the nonlinear system and explain the internetbased control.
文摘In the present study the MOFLP models have been developed for the optimal cropping pattern planning which maximizes the four objectives such as Net Benefits (NB), Crop Production (CP), Employment Generation (EG) and Manure Utilization (MU) under conflicting situation and also, for maximization of Releases for Irrigation (RI) and Releases for Power (RP) simultaneously under uncertainty by considering the fuzziness in the objective functions. The developed models have been applied using the LINGO 13 (Language for Interactive General Optimization) optimization software to the case study of the Jayakwadi Project Stage-II across Sindhphana River, in the State of Maharashtra India. The various constraints have been taken into consideration like sowing area, affinity to crop, labour availability, manure availability, water availability for optimal cropping pattern planning. Similarly constraints to find the optimal reservoir operating policy are releases for power and turbine capacity, irrigation demand, reservoir storage capacity, reservoir storage continuity. The level of satisfaction for a compromised solution of optimal cropping pattern planning for four conflicting objectives under fuzzy environment is worked out to be λ = 0.68. The MOFLP compromised solution provides NB = 1088.46 (Million Rupees), CP = 241003 (Tons), EG = 23.13 (Million Man days) and MU = 111454.70 (Tons) respectively. The compromised solution for optimal operation of multi objective reservoir yields the level of satisfaction (λ) = 0.533 for maximizing the releases for irrigation and power simultaneously by satisfying the constraint of the system under consideration. The compromised solution provides the optimal releases, i.e. RI = 348.670 Mm3 and RP = 234.285 Mm3 respectively.
文摘In real world decision making problems, the decision maker has to often optimize more than one objective, which might be conflicting in nature. Also, it is not always possible to find the exact values of the input data and related parameters due to incomplete or unavailable information. This work aims at developing a model that solves a multi objective distribution programming problem involving imprecise available supply, forecast demand, budget and unit cost/ profit coefficients with triangular possibility distributions. This algorithm aims to simultaneously minimize cost and maximize profit with reference to available supply constraint at each source, forecast demand constraint at each destination and budget constraint. An example is given to demonstrate the functioning of this algorithm.
文摘This paper presents a modified method to solve multi-objective nonlinear programming problems with fuzzy parameters in its objective functions and these fuzzy parameters are characterized by fuzzy numbers. The modified method is based on normalized trade-off weights. The obtained stability set corresponding to α-Pareto optimal solution, using our method, is investigated. Moreover, an algorithm for obtaining any subset of the parametric space which has the same corresponding α-Pareto optimal solution is presented. Finally, a numerical example to illustrate our method is also given.
文摘The objective of the paper is to deal with a kind of possibilistic linear programming (PLP) problem involving multiple objectives of conflicting nature. In particular, we have considered a multi objective linear programming (MOLP) problem whose objective is to simultaneously minimize cost and maximize profit in a supply chain where cost and profit coefficients, and related parameters such as available supply, forecast demand and budget are fuzzy with trapezoidal fuzzy numbers. An example is given to illustrate the strategy used to solve the aforesaid PLP problem.
文摘Increasing demand for water from all sectors presents a challenge for policy makers to improve water allocation policies for storage reservoirs. In addition, there are many other organisms and species present in river waters that also require water for their survival. Due to the lack of awareness many times the minimum required quantity and quality of water for river ecosystem is not made available at downstream of storage reservoirs. So, a sustainable approach is required in reservoir operations to maintain the river ecosystem with environmental flow while meeting the other demands. Multi-objective, multi-reservoir operation model developed with Python programming using Fuzzy Linear Programing method incorporating environmental flow requirement of river is presented in this paper. Objective of maximization of irrigation release is considered for first run. In second run maximization of releases for hydropower generation is considered as objective. Further both objectives are fuzzified by incorporating linear membership function and solved to maximize fuzzified objective function simultaneously by maximizing satisfaction level indicator (λ). The optimal reservoir operation policy is presented considering constraints including Irrigation release, Turbine release, Reservoir storage, Environmental flow release and hydrologic continuity. Model applied for multi-reservoir system consists of four reservoirs, i.e., Jayakwadi Stage-I Reservoir (R1), Jayakwadi Stage-II Reservoir (R2), Yeldari Reservoir (R3), Siddheshwar Reservoir (R4) in Godavari River sub-basin from Marathwada region of Maharashtra State, India.
基金This work is supported by the National Natural Science Foundation of China(No. 79670060).
文摘This paper presents a general solution procedure and an interactive fuzzy satisfying method for a kind of fuzzy multi-objective linear programming-problems based on interval valued fuzzy sets. Firstly, a fuzzy set of the fuzzy solutions, which can be focused on providing complete information for the final decision, can be obtained by the proposed tolerance analysis of a non-dominated set. Secondly, the satisfying solution for the decisionmaker can be derived from Pareto optimal solutions by updating the current reference membership levels on the basis of the current levels of the membership functions together with the trade-off rates between the membership functions.
文摘To aim at the variables fuzzyness widely existing in the production planning system, the paper discusses the production planning fuzzy multi objective linear programming model with fuzzy variables, and turns it into two level multi objective linear programming problem by applying a partial order method defining the order of fuzzy numbers. finally, the paper gives its solving method.
文摘In presented fuzzy multi-attribute decision-making (FMADM) problems, the information about attribute weights is interval numbers and the decision maker (DM) has fuzzy complementary preference relation on alternatives. Firstly, the decision-making information based on the subjective preference information in the form of the fuzzy complementary judgment matrix is uniform by using a translation function. Then an objective programming model is established. Attribute weights are obtained by solving the model, thus the fuzzy overall values of alternatives are derived by using the additive weighting method. Secondly, the ranking approach of alternatives is proposed based on the degree of similarity between the fuzzy positive ideal solution of alternatives (FPISA) and the fuzzy overall values. The method can sufficiently utilize the objective information of alternatives and meet the subjective requirements of the DM as much as possible. It is easy to be operated and implemented on a computer. Finally, the proposed method is applied to the project evaluation in the venture investment.
基金Supported by the National Natural Science Foundation of China (Grant No.10671057)
文摘This paper first applies the fuzzy set theory to multi-objective semi-definite program-ming (MSDP), and proposes the fuzzy multi-objective semi-definite programming (FMSDP) model whose optimal efficient solution is defined for the first time, too. By constructing a membership function, the FMSDP is translated to the MSDP. Then we prove that the optimal efficient solution of FMSDP is consistent with the efficient solution of MSDP and present the optimality condition about these programming. At last, we give an algorithm for FMSDP by introducing a new membership function and a series of transformation.
文摘The objective of this paper is to develop the irrigation planning model and to apply the same in the form of Multi Objective Fuzzy Linear Programming (MOFLP) approach for crop planning in command area of Jayakwadi Project Stage I, Maharashtra State, India. To formulate MOFLP model various Linear Programming (LP) models are developed to optimize the Net Benefits (NB), Crop/Yield Production (YP), Employment Generation (EG) and Manure Utilization (MU) for which the objective function and constraints are crisp in nature. From the results of these LP models the linear membership function for each individual objective function has been developed. Considering the decision makers satisfaction level (λ), all the four objectives are maximized simultaneously. The results of the MOFLP and LP are compared. The MOFLP model concentrates on satisfying four objectives simultaneously. The present model will be helpful for the decision maker to take decision under conflicting situation when planning for different objectives simultaneously. The degree of satisfaction λ, works out to be 0.58. Compromised solution provides Net Benefits 1503.73 Million Rupees, Crop Production 319563.50 Tons, Employment Generation/Labour Requirement 29.74 Million Man days and Manure Utilization 154506.50 Tons respectively.