The challenge of keeping and getting new customers drives the development of new practices to meet the consumption needs of increasingly tends to micro-segmentation of product and consumer market. The new consumption ...The challenge of keeping and getting new customers drives the development of new practices to meet the consumption needs of increasingly tends to micro-segmentation of product and consumer market. The new consumption habits of brazilians brought new prospects for market. The objective of this paper is to develop of a dynamic vehicle routing system supported by the behavior of urban traffic in the city ofSao Paulo using Neuro Fuzzy Network. The methodology of this paper consists in the capture of relevant events that interfere with the flow of traffic of the city of Sao Paulo and implementation of a Fuzzy Neural Network trained with these events in order to foresee the traffic behavior. The system offers three labels of hierarchical routing, thus is possible to consider not only the basic factors of routing, but too external factors that directly influence on the flow of traffic and the disruption which may be avoided in large cities, through alternative routes (dynamic vehicle routing). Predicting the behavior of traffic represents the strategic level routing, dynamic vehicle routing is the tactical level, and routing algorithms to the operational level. This paper will not be discussed the operational level.展开更多
The scheme for tracking maneuvering target based on neural fuzzy network with incremental neural learning is proposed. When tracked target maneuver occurs, the scheme can detect maneuver immediately and estimate the m...The scheme for tracking maneuvering target based on neural fuzzy network with incremental neural learning is proposed. When tracked target maneuver occurs, the scheme can detect maneuver immediately and estimate the maneuver value accurately , then the tracking filter can be compensated correctly and duly by the estimated maneuver value. When environment changes, neural fuzzy network with incremental neural learning (INL-SONFIN) can find its optimal structure and parameters automatically to adopt to changed environment. So, it always produce estimated output very close to the true maneuver value that leads to good tracking performance and avoids misstracking. Simulation results show that the performance is superior to the traditional schemes and the scheme can fit changed dynamic environment to track maneuvering target accurately and duly.展开更多
Distinguishing the difficulty degree of top coal caving was a precondition of the popularization and application of the roadway sub-level caving in steep seam. Because of complexity and uncertainty of the coal seam, t...Distinguishing the difficulty degree of top coal caving was a precondition of the popularization and application of the roadway sub-level caving in steep seam. Because of complexity and uncertainty of the coal seam, the expression of influence factors was diffi-culty with exact data. According to the fuzzy and uncertainty of influence factors, triangular fuzzy membership functions were adopted to carry out the factors ambiguity, of which the factors not only have the consistency of semantic meaning, but also dissolve sufficiently expert knowledge. Based on the properties and structures of fasART fuzzy neural net-works of fuzzy logic system and practical needs, a simplified fasART model was put for-ward, stability and reliability of the network were improved, the deficiency of learning sam-ples and uncertainty of the factors were better treated. The method is of effective and practical value was identified by experiments.展开更多
The problem of robust H∞ control for uncertain discrete-time Takagi and Sugeno (T-S) fuzzy networked control systems (NCSs) is investigated in this paper subject to state quantization. By taking into consideration ne...The problem of robust H∞ control for uncertain discrete-time Takagi and Sugeno (T-S) fuzzy networked control systems (NCSs) is investigated in this paper subject to state quantization. By taking into consideration network induced delays and packet dropouts, an improved model of network-based control is developed. A less conservative delay-dependent stability condition for the closed NCSs is derived by employing a fuzzy Lyapunov-Krasovskii functional. Robust H∞ fuzzy controller is constructed that guarantee asymptotic stabilization of the NCSs and expressed in LMI-based conditions. A numerical example illustrates the effectiveness of the developed technique.展开更多
Fuzzy technology is a newly developed discipline based on fuzzy mathematics. In the recent years, it has been successfully applied into many areas, such as process control, diagnosis, evaluation, decision making and s...Fuzzy technology is a newly developed discipline based on fuzzy mathematics. In the recent years, it has been successfully applied into many areas, such as process control, diagnosis, evaluation, decision making and scheduling, especially in simulation where accurate mathematical models can not or very hard be established. In this paper, to meet the demands of fuzzy simulation, two fuzzy nets will first be presented, which are quite suitable for modeling the parallel or concurrent systems with fuzzy behavior. Then, a concept of active simulation will be introduced, in which the simulation model not only can show its fuzzy behavior, but also has a certain ability which can actively perform many very useful actions, such as automatic warning, realtime monitoring, simulation result checking, simulation model self-adapting, error recovery, simulating path tracing, system states inspecting and exception handling, by a unified approach while some specified events occur. The simulation model described by this powerful simulation modeling tool is concurrently driven by a network interpreter and an event monitor that all can be implemented by software or hardware. Besides, some interesting applications are given in the paper.展开更多
The Neural Fuuzy Network(NFN) has been utilized to more adequately capture and reuse the knowledge and experience of the process planner. Previous process plans are made use of to construct the initial 5 layered NFN. ...The Neural Fuuzy Network(NFN) has been utilized to more adequately capture and reuse the knowledge and experience of the process planner. Previous process plans are made use of to construct the initial 5 layered NFN. The NFN has the sigmoid function in the the fuzzification and output layers, the Product combines the conditions to a rule, and Summation integrates the fired rules. A Backward Propagation(BP) training algorithm has been developed to fine tune the network. The system trains and chooses manufacturing operations correctly.展开更多
We present a novel approach for computing a shortest path in a mixed fuzzy network, network having various fuzzy arc lengths. First, we develop a new technique for the addition of various fuzzy numbers in a path using...We present a novel approach for computing a shortest path in a mixed fuzzy network, network having various fuzzy arc lengths. First, we develop a new technique for the addition of various fuzzy numbers in a path using -cuts. Then, we present a dynamic programming method for finding a shortest path in the network. For this, we apply a recently proposed distance function for comparison of fuzzy numbers. Four examples are worked out to illustrate the applicability of the proposed approach as compared to two other methods in the literature as well as demonstrate the novel feature offered by our algorithm to find a fuzzy shortest path in mixed fuzzy networks with various settings for the fuzzy arc lengths.展开更多
The idea of linear Diophantine fuzzy set(LDFS)theory with its control parameters is a strong model for machine learning and optimization under uncertainty.The activity times in the critical path method(CPM)representat...The idea of linear Diophantine fuzzy set(LDFS)theory with its control parameters is a strong model for machine learning and optimization under uncertainty.The activity times in the critical path method(CPM)representation procedures approach are initially static,but in the Project Evaluation and Review Technique(PERT)approach,they are probabilistic.This study proposes a novel way of project review and assessment methodology for a project network in a linear Diophantine fuzzy(LDF)environment.The LDF expected task time,LDF variance,LDF critical path,and LDF total expected time for determining the project network are all computed using LDF numbers as the time of each activity in the project network.The primary premise of the LDF-PERT approach is to address ambiguities in project network activity timesmore simply than other approaches such as conventional PERT,Fuzzy PERT,and so on.The LDF-PERT is an efficient approach to analyzing symmetries in fuzzy control systems to seek an optimal decision.We also present a new approach for locating LDF-CPM in a project network with uncertain and erroneous activity timings.When the available resources and activity times are imprecise and unpredictable,this strategy can help decision-makers make better judgments in a project.A comparison analysis of the proposed technique with the existing techniques has also been discussed.The suggested techniques are demonstrated with two suitable numerical examples.展开更多
Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vul...Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vulnerable to various attacks.Traditional encryption and authentication mechanisms cannot prevent attacks launched by internal malicious nodes.The trust-based security mechanism is usually adopted to solve this problem in WSNs.However,the behavioral evidence used for trust estimation presents some uncertainties due to the open wireless medium and the inexpensive sensor nodes.Moreover,how to efficiently collect behavioral evidences are rarely discussed.To address these issues,in this paper,we present a trust management mechanism based on fuzzy logic and a cloud model.First,a type-II fuzzy logic system is used to preprocess the behavioral evidences and alleviate uncertainty.Then,the cloud model is introduced to estimate the trust values for sensor nodes.Finally,a dynamic behavior monitoring protocol is proposed to provide a balance between energy conservation and safety assurance.Simulation results demonstrate that our trust management mechanism can effectively protect the network from internal malicious attacks while enhancing the energy efficiency of behavior monitoring.展开更多
One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operati...One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operations.As a result,a reliable roof fall prediction model is essential to tackle such challenges.Different parameters that substantially impact roof falls are ill-defined and intangible,making this an uncertain and challenging research issue.The National Institute for Occupational Safety and Health assembled a national database of roof performance from 37 coal mines to explore the factors contributing to roof falls.Data acquired for 37 mines is limited due to several restrictions,which increased the likelihood of incompleteness.Fuzzy logic is a technique for coping with ambiguity,incompleteness,and uncertainty.Therefore,In this paper,the fuzzy inference method is presented,which employs a genetic algorithm to create fuzzy rules based on 109 records of roof fall data and pattern search to refine the membership functions of parameters.The performance of the deployed model is evaluated using statistical measures such as the Root-Mean-Square Error,Mean-Absolute-Error,and coefficient of determination(R_(2)).Based on these criteria,the suggested model outperforms the existing models to precisely predict roof fall rates using fewer fuzzy rules.展开更多
This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results...This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination.展开更多
This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide...This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.展开更多
Time-stamped data is fast and constantly growing and it contains significant information thanks to the quick development ofmanagement platforms and systems based on the Internet and cutting-edge information communicat...Time-stamped data is fast and constantly growing and it contains significant information thanks to the quick development ofmanagement platforms and systems based on the Internet and cutting-edge information communication technologies.Mining the time series data including time series prediction has many practical applications.Many new techniques were developed for use with various types of time series data in the prediction problem.Among those,this work suggests a unique strategy to enhance predicting quality on time-series datasets that the timecycle matters by fusing deep learning methods with fuzzy theory.In order to increase forecasting accuracy on such type of time-series data,this study proposes integrating deep learning approaches with fuzzy logic.Particularly,it combines the long short-termmemory network with the complex fuzzy set theory to create an innovative complex fuzzy long short-term memory model(CFLSTM).The proposed model adds a meaningful representation of the time cycle element thanks to a complex fuzzy set to advance the deep learning long short-term memory(LSTM)technique to have greater power for processing time series data.Experiments on standard common data sets and real-world data sets published in the UCI Machine Learning Repository demonstrated the proposedmodel’s utility compared to other well-known forecasting models.The results of the comparisons supported the applicability of our proposed strategy for forecasting time series data.展开更多
With the exponential increase in information security risks,ensuring the safety of aircraft heavily relies on the accurate performance of risk assessment.However,experts possess a limited understanding of fundamental ...With the exponential increase in information security risks,ensuring the safety of aircraft heavily relies on the accurate performance of risk assessment.However,experts possess a limited understanding of fundamental security elements,such as assets,threats,and vulnerabilities,due to the confidentiality of airborne networks,resulting in cognitive uncertainty.Therefore,the Pythagorean fuzzy Analytic Hierarchy Process(AHP)Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)is proposed to address the expert cognitive uncertainty during information security risk assessment for airborne networks.First,Pythagorean fuzzy AHP is employed to construct an index system and quantify the pairwise comparison matrix for determining the index weights,which is used to solve the expert cognitive uncertainty in the process of evaluating the index system weight of airborne networks.Second,Pythagorean fuzzy the TOPSIS to an Ideal Solution is utilized to assess the risk prioritization of airborne networks using the Pythagorean fuzzy weighted distance measure,which is used to address the cognitive uncertainty in the evaluation process of various indicators in airborne network threat scenarios.Finally,a comparative analysis was conducted.The proposed method demonstrated the highest Kendall coordination coefficient of 0.952.This finding indicates superior consistency and confirms the efficacy of the method in addressing expert cognition during information security risk assessment for airborne networks.展开更多
This paper investigates the exponential and prescribed finite-time stabilization with time-varying controller.First,the constraints of boundedness and differentiability on time delays are simultaneously relaxed,the Li...This paper investigates the exponential and prescribed finite-time stabilization with time-varying controller.First,the constraints of boundedness and differentiability on time delays are simultaneously relaxed,the Lipschitz condition for activation function is also relaxed.Second,different from the traditional Lyapunov function,two different time-varying Lyapunov functions are respectively constructed to achieve the exponential and prescribed finite-time stabilization.Significantly,the exponential convergence rate and the settling time are constants that can be given in advance and are not affected by system parameters and initial states.In addition,the time-varying controllers have good tolerance for disturbance caused by discontinuous functions and the disturbance is perfectly resolved and does not affect the control performance.Especially,the form of controllers is relatively simple and there is not necessary to design the fractional-order controllers for prescribed finite-time stabilization.Furthermore,the exponential and prescribed finite-time stabilization for FNNs without delay are respectively established via continuous time-varying state feedback control.Finally,examples show the effectiveness of the proposed control methods.展开更多
Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pP...Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.展开更多
The dramatic rise in the number of people living in cities has made many environmental and social problems worse.The search for a productive method for disposing of solid waste is the most notable of these problems.Ma...The dramatic rise in the number of people living in cities has made many environmental and social problems worse.The search for a productive method for disposing of solid waste is the most notable of these problems.Many scholars have referred to it as a fuzzy multi-attribute or multi-criteria decision-making problem using various fuzzy set-like approaches because of the inclusion of criteria and anticipated ambiguity.The goal of the current study is to use an innovative methodology to address the expected uncertainties in the problem of solid waste site selection.The characteristics(or sub-attributes)that decision-makers select and the degree of approximation they accept for various options can both be indicators of these uncertainties.To tackle these problems,a novel mathematical structure known as the fuzzy parameterized possibility single valued neutrosophic hypersoft expert set(ρˆ-set),which is initially described,is integrated with a modified version of Sanchez’s method.Following this,an intelligent algorithm is suggested.The steps of the suggested algorithm are explained with an example that explains itself.The compatibility of solid waste management sites and systems is discussed,and rankings are established along with detailed justifications for their viability.This study’s strengths lie in its application of fuzzy parameterization and possibility grading to effectively handle the uncertainties embodied in the parameters’nature and alternative approximations,respectively.It uses specific mathematical formulations to compute the fuzzy parameterized degrees and possibility grades that are missing from the prior literature.It is simpler for the decisionmakers to look at each option separately because the decision is uncertain.Comparing the computed results,it is discovered that they are consistent and dependable because of their preferred properties.展开更多
This paper discusses the general decay synchronization problem for a class of fuzzy competitive neural networks with time-varying delays and discontinuous activation functions. Firstly, based on the concept of Filippo...This paper discusses the general decay synchronization problem for a class of fuzzy competitive neural networks with time-varying delays and discontinuous activation functions. Firstly, based on the concept of Filippov solutions for right-hand discontinuous systems, some sufficient conditions for general decay synchronization of the considered system are obtained via designing a nonlinear feedback controller and applying discontinuous differential equation theory, Lyapunov functional methods and some inequality techniques. Finally, one numerical example is given to verify the effectiveness of the proposed theoretical results. The general decay synchronization considered in this article can better estimate the convergence rate of the system, and the exponential synchronization and polynomial synchronization can be seen as its special cases.展开更多
In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties ...In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties of aluminum-5%magnesium (0-0.9 wt%) neodymium. The single input (SI) to the fuzzy logic and artificial neural network models was the percentage weight of neodymium, while the multiple outputs (MO) were average grain size, ultimate tensile strength, yield strength elongation and hardness. The fuzzy logic-based model showed more accurate prediction than the artificial neutral network-based model in terms of the correlation coefficient values (R).展开更多
In this paper, a sender-initiated protocol is applied which uses fuzzy logic control method to improve computer networks performance by balancing loads among computers. This new model devises sender-initiated protocol...In this paper, a sender-initiated protocol is applied which uses fuzzy logic control method to improve computer networks performance by balancing loads among computers. This new model devises sender-initiated protocol for load transfer for load balancing. Groups are formed and every group has a node called a designated representative (DR). During load transferring processes, loads are transferred using the DR in each group to achieve load balancing purposes. The simulation results show that the performance of the protocol proposed is better than the compared conventional method. This protocol is more stable than the method without using the fuzzy logic control.展开更多
文摘The challenge of keeping and getting new customers drives the development of new practices to meet the consumption needs of increasingly tends to micro-segmentation of product and consumer market. The new consumption habits of brazilians brought new prospects for market. The objective of this paper is to develop of a dynamic vehicle routing system supported by the behavior of urban traffic in the city ofSao Paulo using Neuro Fuzzy Network. The methodology of this paper consists in the capture of relevant events that interfere with the flow of traffic of the city of Sao Paulo and implementation of a Fuzzy Neural Network trained with these events in order to foresee the traffic behavior. The system offers three labels of hierarchical routing, thus is possible to consider not only the basic factors of routing, but too external factors that directly influence on the flow of traffic and the disruption which may be avoided in large cities, through alternative routes (dynamic vehicle routing). Predicting the behavior of traffic represents the strategic level routing, dynamic vehicle routing is the tactical level, and routing algorithms to the operational level. This paper will not be discussed the operational level.
基金This project was supported by Spaceflight Support Fund ( HIT01) and the Spaceflight Science Project Group
文摘The scheme for tracking maneuvering target based on neural fuzzy network with incremental neural learning is proposed. When tracked target maneuver occurs, the scheme can detect maneuver immediately and estimate the maneuver value accurately , then the tracking filter can be compensated correctly and duly by the estimated maneuver value. When environment changes, neural fuzzy network with incremental neural learning (INL-SONFIN) can find its optimal structure and parameters automatically to adopt to changed environment. So, it always produce estimated output very close to the true maneuver value that leads to good tracking performance and avoids misstracking. Simulation results show that the performance is superior to the traditional schemes and the scheme can fit changed dynamic environment to track maneuvering target accurately and duly.
文摘Distinguishing the difficulty degree of top coal caving was a precondition of the popularization and application of the roadway sub-level caving in steep seam. Because of complexity and uncertainty of the coal seam, the expression of influence factors was diffi-culty with exact data. According to the fuzzy and uncertainty of influence factors, triangular fuzzy membership functions were adopted to carry out the factors ambiguity, of which the factors not only have the consistency of semantic meaning, but also dissolve sufficiently expert knowledge. Based on the properties and structures of fasART fuzzy neural net-works of fuzzy logic system and practical needs, a simplified fasART model was put for-ward, stability and reliability of the network were improved, the deficiency of learning sam-ples and uncertainty of the factors were better treated. The method is of effective and practical value was identified by experiments.
文摘The problem of robust H∞ control for uncertain discrete-time Takagi and Sugeno (T-S) fuzzy networked control systems (NCSs) is investigated in this paper subject to state quantization. By taking into consideration network induced delays and packet dropouts, an improved model of network-based control is developed. A less conservative delay-dependent stability condition for the closed NCSs is derived by employing a fuzzy Lyapunov-Krasovskii functional. Robust H∞ fuzzy controller is constructed that guarantee asymptotic stabilization of the NCSs and expressed in LMI-based conditions. A numerical example illustrates the effectiveness of the developed technique.
文摘Fuzzy technology is a newly developed discipline based on fuzzy mathematics. In the recent years, it has been successfully applied into many areas, such as process control, diagnosis, evaluation, decision making and scheduling, especially in simulation where accurate mathematical models can not or very hard be established. In this paper, to meet the demands of fuzzy simulation, two fuzzy nets will first be presented, which are quite suitable for modeling the parallel or concurrent systems with fuzzy behavior. Then, a concept of active simulation will be introduced, in which the simulation model not only can show its fuzzy behavior, but also has a certain ability which can actively perform many very useful actions, such as automatic warning, realtime monitoring, simulation result checking, simulation model self-adapting, error recovery, simulating path tracing, system states inspecting and exception handling, by a unified approach while some specified events occur. The simulation model described by this powerful simulation modeling tool is concurrently driven by a network interpreter and an event monitor that all can be implemented by software or hardware. Besides, some interesting applications are given in the paper.
文摘The Neural Fuuzy Network(NFN) has been utilized to more adequately capture and reuse the knowledge and experience of the process planner. Previous process plans are made use of to construct the initial 5 layered NFN. The NFN has the sigmoid function in the the fuzzification and output layers, the Product combines the conditions to a rule, and Summation integrates the fired rules. A Backward Propagation(BP) training algorithm has been developed to fine tune the network. The system trains and chooses manufacturing operations correctly.
文摘We present a novel approach for computing a shortest path in a mixed fuzzy network, network having various fuzzy arc lengths. First, we develop a new technique for the addition of various fuzzy numbers in a path using -cuts. Then, we present a dynamic programming method for finding a shortest path in the network. For this, we apply a recently proposed distance function for comparison of fuzzy numbers. Four examples are worked out to illustrate the applicability of the proposed approach as compared to two other methods in the literature as well as demonstrate the novel feature offered by our algorithm to find a fuzzy shortest path in mixed fuzzy networks with various settings for the fuzzy arc lengths.
基金supported by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia[Grant No.GRANT3862].
文摘The idea of linear Diophantine fuzzy set(LDFS)theory with its control parameters is a strong model for machine learning and optimization under uncertainty.The activity times in the critical path method(CPM)representation procedures approach are initially static,but in the Project Evaluation and Review Technique(PERT)approach,they are probabilistic.This study proposes a novel way of project review and assessment methodology for a project network in a linear Diophantine fuzzy(LDF)environment.The LDF expected task time,LDF variance,LDF critical path,and LDF total expected time for determining the project network are all computed using LDF numbers as the time of each activity in the project network.The primary premise of the LDF-PERT approach is to address ambiguities in project network activity timesmore simply than other approaches such as conventional PERT,Fuzzy PERT,and so on.The LDF-PERT is an efficient approach to analyzing symmetries in fuzzy control systems to seek an optimal decision.We also present a new approach for locating LDF-CPM in a project network with uncertain and erroneous activity timings.When the available resources and activity times are imprecise and unpredictable,this strategy can help decision-makers make better judgments in a project.A comparison analysis of the proposed technique with the existing techniques has also been discussed.The suggested techniques are demonstrated with two suitable numerical examples.
基金supported in part by the Chongqing Electronics Engineering Technology Research Center for Interactive Learningin part by the Chongqing key discipline of electronic informationin part by the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202201630)。
文摘Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vulnerable to various attacks.Traditional encryption and authentication mechanisms cannot prevent attacks launched by internal malicious nodes.The trust-based security mechanism is usually adopted to solve this problem in WSNs.However,the behavioral evidence used for trust estimation presents some uncertainties due to the open wireless medium and the inexpensive sensor nodes.Moreover,how to efficiently collect behavioral evidences are rarely discussed.To address these issues,in this paper,we present a trust management mechanism based on fuzzy logic and a cloud model.First,a type-II fuzzy logic system is used to preprocess the behavioral evidences and alleviate uncertainty.Then,the cloud model is introduced to estimate the trust values for sensor nodes.Finally,a dynamic behavior monitoring protocol is proposed to provide a balance between energy conservation and safety assurance.Simulation results demonstrate that our trust management mechanism can effectively protect the network from internal malicious attacks while enhancing the energy efficiency of behavior monitoring.
文摘One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operations.As a result,a reliable roof fall prediction model is essential to tackle such challenges.Different parameters that substantially impact roof falls are ill-defined and intangible,making this an uncertain and challenging research issue.The National Institute for Occupational Safety and Health assembled a national database of roof performance from 37 coal mines to explore the factors contributing to roof falls.Data acquired for 37 mines is limited due to several restrictions,which increased the likelihood of incompleteness.Fuzzy logic is a technique for coping with ambiguity,incompleteness,and uncertainty.Therefore,In this paper,the fuzzy inference method is presented,which employs a genetic algorithm to create fuzzy rules based on 109 records of roof fall data and pattern search to refine the membership functions of parameters.The performance of the deployed model is evaluated using statistical measures such as the Root-Mean-Square Error,Mean-Absolute-Error,and coefficient of determination(R_(2)).Based on these criteria,the suggested model outperforms the existing models to precisely predict roof fall rates using fewer fuzzy rules.
文摘This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination.
基金supported by the National Natural Science Foundation of China(61973105,62373137)。
文摘This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.
基金funded by the Research Project:THTETN.05/23-24,Vietnam Academy of Science and Technology.
文摘Time-stamped data is fast and constantly growing and it contains significant information thanks to the quick development ofmanagement platforms and systems based on the Internet and cutting-edge information communication technologies.Mining the time series data including time series prediction has many practical applications.Many new techniques were developed for use with various types of time series data in the prediction problem.Among those,this work suggests a unique strategy to enhance predicting quality on time-series datasets that the timecycle matters by fusing deep learning methods with fuzzy theory.In order to increase forecasting accuracy on such type of time-series data,this study proposes integrating deep learning approaches with fuzzy logic.Particularly,it combines the long short-termmemory network with the complex fuzzy set theory to create an innovative complex fuzzy long short-term memory model(CFLSTM).The proposed model adds a meaningful representation of the time cycle element thanks to a complex fuzzy set to advance the deep learning long short-term memory(LSTM)technique to have greater power for processing time series data.Experiments on standard common data sets and real-world data sets published in the UCI Machine Learning Repository demonstrated the proposedmodel’s utility compared to other well-known forecasting models.The results of the comparisons supported the applicability of our proposed strategy for forecasting time series data.
基金supported by the Fundamental Research Funds for the Central Universities of CAUC(3122022076)National Natural Science Foundation of China(NSFC)(U2133203).
文摘With the exponential increase in information security risks,ensuring the safety of aircraft heavily relies on the accurate performance of risk assessment.However,experts possess a limited understanding of fundamental security elements,such as assets,threats,and vulnerabilities,due to the confidentiality of airborne networks,resulting in cognitive uncertainty.Therefore,the Pythagorean fuzzy Analytic Hierarchy Process(AHP)Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)is proposed to address the expert cognitive uncertainty during information security risk assessment for airborne networks.First,Pythagorean fuzzy AHP is employed to construct an index system and quantify the pairwise comparison matrix for determining the index weights,which is used to solve the expert cognitive uncertainty in the process of evaluating the index system weight of airborne networks.Second,Pythagorean fuzzy the TOPSIS to an Ideal Solution is utilized to assess the risk prioritization of airborne networks using the Pythagorean fuzzy weighted distance measure,which is used to address the cognitive uncertainty in the evaluation process of various indicators in airborne network threat scenarios.Finally,a comparative analysis was conducted.The proposed method demonstrated the highest Kendall coordination coefficient of 0.952.This finding indicates superior consistency and confirms the efficacy of the method in addressing expert cognition during information security risk assessment for airborne networks.
基金National Natural Science Foundation of China under Grants 62203338,61936004,61821003,62173259 and 62176192Postdoctoral Science Foundation of China under Grant 2022M722485.
文摘This paper investigates the exponential and prescribed finite-time stabilization with time-varying controller.First,the constraints of boundedness and differentiability on time delays are simultaneously relaxed,the Lipschitz condition for activation function is also relaxed.Second,different from the traditional Lyapunov function,two different time-varying Lyapunov functions are respectively constructed to achieve the exponential and prescribed finite-time stabilization.Significantly,the exponential convergence rate and the settling time are constants that can be given in advance and are not affected by system parameters and initial states.In addition,the time-varying controllers have good tolerance for disturbance caused by discontinuous functions and the disturbance is perfectly resolved and does not affect the control performance.Especially,the form of controllers is relatively simple and there is not necessary to design the fractional-order controllers for prescribed finite-time stabilization.Furthermore,the exponential and prescribed finite-time stabilization for FNNs without delay are respectively established via continuous time-varying state feedback control.Finally,examples show the effectiveness of the proposed control methods.
基金supported by the Deanship of Graduate Studies and Scientific Research at Qassim University(QU-APC-2024-9/1).
文摘Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.
文摘The dramatic rise in the number of people living in cities has made many environmental and social problems worse.The search for a productive method for disposing of solid waste is the most notable of these problems.Many scholars have referred to it as a fuzzy multi-attribute or multi-criteria decision-making problem using various fuzzy set-like approaches because of the inclusion of criteria and anticipated ambiguity.The goal of the current study is to use an innovative methodology to address the expected uncertainties in the problem of solid waste site selection.The characteristics(or sub-attributes)that decision-makers select and the degree of approximation they accept for various options can both be indicators of these uncertainties.To tackle these problems,a novel mathematical structure known as the fuzzy parameterized possibility single valued neutrosophic hypersoft expert set(ρˆ-set),which is initially described,is integrated with a modified version of Sanchez’s method.Following this,an intelligent algorithm is suggested.The steps of the suggested algorithm are explained with an example that explains itself.The compatibility of solid waste management sites and systems is discussed,and rankings are established along with detailed justifications for their viability.This study’s strengths lie in its application of fuzzy parameterization and possibility grading to effectively handle the uncertainties embodied in the parameters’nature and alternative approximations,respectively.It uses specific mathematical formulations to compute the fuzzy parameterized degrees and possibility grades that are missing from the prior literature.It is simpler for the decisionmakers to look at each option separately because the decision is uncertain.Comparing the computed results,it is discovered that they are consistent and dependable because of their preferred properties.
文摘This paper discusses the general decay synchronization problem for a class of fuzzy competitive neural networks with time-varying delays and discontinuous activation functions. Firstly, based on the concept of Filippov solutions for right-hand discontinuous systems, some sufficient conditions for general decay synchronization of the considered system are obtained via designing a nonlinear feedback controller and applying discontinuous differential equation theory, Lyapunov functional methods and some inequality techniques. Finally, one numerical example is given to verify the effectiveness of the proposed theoretical results. The general decay synchronization considered in this article can better estimate the convergence rate of the system, and the exponential synchronization and polynomial synchronization can be seen as its special cases.
文摘In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties of aluminum-5%magnesium (0-0.9 wt%) neodymium. The single input (SI) to the fuzzy logic and artificial neural network models was the percentage weight of neodymium, while the multiple outputs (MO) were average grain size, ultimate tensile strength, yield strength elongation and hardness. The fuzzy logic-based model showed more accurate prediction than the artificial neutral network-based model in terms of the correlation coefficient values (R).
文摘In this paper, a sender-initiated protocol is applied which uses fuzzy logic control method to improve computer networks performance by balancing loads among computers. This new model devises sender-initiated protocol for load transfer for load balancing. Groups are formed and every group has a node called a designated representative (DR). During load transferring processes, loads are transferred using the DR in each group to achieve load balancing purposes. The simulation results show that the performance of the protocol proposed is better than the compared conventional method. This protocol is more stable than the method without using the fuzzy logic control.