The ordered weighted geometric averaging(OWGA) operator is extended to accommodate uncertain conditions where all input arguments take the forms of interval numbers. First, a possibility degree formula for the compa...The ordered weighted geometric averaging(OWGA) operator is extended to accommodate uncertain conditions where all input arguments take the forms of interval numbers. First, a possibility degree formula for the comparison between interval numbers is introduced. It is proved that the introduced formula is equivalent to the existing formulae, and also some desired properties of the possibility degree is presented. Secondly, the uncertain OWGA operator is investigated in which the associated weighting parameters cannot be specified, but value ranges can be obtained and the associated aggregated values of an uncertain OWGA operator are known. A linear objective-programming model is established; by solving this model, the associated weights vector of an uncertain OWGA operator can be determined, and also the estimated aggregated values of the alternatives can be obtained. Then the alternatives can be ranked by the comparison of the estimated aggregated values using the possibility degree formula. Finally, a numerical example is given to show the feasibility and effectiveness of the developed method.展开更多
Hypersoft set theory is a most advanced form of soft set theory and an innovative mathematical tool for dealing with unclear complications.Pythagorean fuzzy hypersoft set(PFHSS)is the most influential and capable leew...Hypersoft set theory is a most advanced form of soft set theory and an innovative mathematical tool for dealing with unclear complications.Pythagorean fuzzy hypersoft set(PFHSS)is the most influential and capable leeway of the hypersoft set(HSS)and Pythagorean fuzzy soft set(PFSS).It is also a general form of the intuitionistic fuzzy hypersoft set(IFHSS),which provides a better and more perfect assessment of the decision-making(DM)process.The fundamental objective of this work is to enrich the precision of decision-making.A novel mixed aggregation operator called Pythagorean fuzzy hypersoft Einstein weighted geometric(PFHSEWG)based on Einstein’s operational laws has been developed.Some necessary properties,such as idempotency,boundedness,and homogeneity,have been presented for the anticipated PFHSEWG operator.Multi-criteria decision-making(MCDM)plays an active role in dealing with the complications of manufacturing design for material selection.However,conventional methods of MCDM usually produce inconsistent results.Based on the proposed PFHSEWG operator,a robust MCDM procedure for material selection in manufacturing design is planned to address these inconveniences.The expected MCDM method for material selection(MS)of cryogenic storing vessels has been established in the real world.Significantly,the planned model for handling inaccurate data based on PFHSS is more operative and consistent.展开更多
Multiattribute decision making(MADM) problems, in which the weights and ratings of alternatives are expressed with intuitionistic fuzzy(IF) sets, are investigated.Firstly, the relative degrees of membership and th...Multiattribute decision making(MADM) problems, in which the weights and ratings of alternatives are expressed with intuitionistic fuzzy(IF) sets, are investigated.Firstly, the relative degrees of membership and the relative degrees of non-membership are formulated as IF sets, the weights and values of alternatives on both qualitative and quantitative attributes may be expressed as IF sets in a unified way.Then a MADM method based on generalized ordered weighted averaging operators is proposed.The proposed method is illustrated with a numerical example.展开更多
The multiple attribute decision making problems are studied, in which the information about attribute weights is partly known and the attribute values take the form of intuitionistic fuzzy numbers. The operational law...The multiple attribute decision making problems are studied, in which the information about attribute weights is partly known and the attribute values take the form of intuitionistic fuzzy numbers. The operational laws of intuitionistic fuzzy numbers are introduced, and the score function and accuracy function are presented to compare the intuitionistic fuzzy numbers. The intuitionistic fuzzy ordered weighted averaging (IFOWA) operator which is an extension of the well-known ordered weighted averaging (OWA) operator is investigated to aggregate the intuitionistic fuzzy information. In order to determine the weights of intuitionistic fuzzy ordered weighted averaging operator, a linear goal programming procedure is proposed for learning the weights from data. Finally, an example is illustrated to verify the effectiveness and practicability of the developed method.展开更多
The primary goal of this research is to determine the optimal agricultural field selection that would most effectively support manufacturing producers in manufacturing production while accounting for unpredictability ...The primary goal of this research is to determine the optimal agricultural field selection that would most effectively support manufacturing producers in manufacturing production while accounting for unpredictability and reliability in their decision-making.The PFS is known to address the levels of participation and non-participation.To begin,we introduce the novel concept of a PFZN,which is a hybrid structure of Pythagorean fuzzy sets and the ZN.The PFZN is graded in terms of membership and non-membership,as well as reliability,which provides a strong advice in real-world decision support concerns.The PFZN is a useful tool for dealing with uncertainty in decision-aid problems.The PFZN is a practical way for dealing with such uncertainties in decision-aid problems.The list of aggregation operators:PFZN Einstein weighted averaging and PFZN Einstein weighted geometric,is established under the novel Pythagorean fuzzy ZNs.It is a more precise mathematical instrument for dealing with precision and uncertainty.The core of this research is to develop a numerical algorithmto tackle the uncertainty in real-life problems using PFZNs.To show the applicability and effectiveness of the proposed algorithm,we illustrate the numerical case study related to determining the optimal agricultural field.The main purpose of this work is to describe the extended EDAS approach,then compare the proposed methodology with many other methodologies now in use,and then demonstrate how the suggested methodology may be applied to real-world problems.In addition,the final ranking results that were obtained by the devised techniques weremore efficient and dependable in comparison to the results provided by other methods presented in the literature.展开更多
Supply chain management is an essential part of an organisation's sustainable programme.Understanding the concentration of natural environment,public,and economic influence and feasibility of your suppliers and pu...Supply chain management is an essential part of an organisation's sustainable programme.Understanding the concentration of natural environment,public,and economic influence and feasibility of your suppliers and purchasers is becoming progressively familiar as all industries are moving towards a massive sustainable potential.To handle such sort of developments in supply chain management the involvement of fuzzy settings and their generalisations is playing an important role.Keeping in mind this role,the aim of this study is to analyse the role and involvement of complex q-rung orthopair normal fuzzy(CQRONF)information in supply chain management.The major impact of this theory is to analyse the notion of confidence CQRONF weighted averaging,confidence CQRONF ordered weighted averaging,confidence CQRONF hybrid averaging,confidence CQRONF weighted geometric,confidence CQRONF ordered weighted geometric,confidence CQRONF hybrid geometric operators and try to diagnose various properties and results.Furthermore,with the help of the CRITIC and VIKOR models,we diagnosed the novel theory of the CQRONF-CRITIC-VIKOR model to check the sensitivity analysis of the initiated method.Moreover,in the availability of diagnosed operators,we constructed a multi-attribute decision-making tool for finding a beneficial sustainable supplier to handle complex dilemmas.Finally,the initiated operator's efficiency is proved by comparative analysis.展开更多
Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their...Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their scientifical and reasonable information expression and group decision-making model for renal cancer patients.Fuzzy multi-sets(FMSs)have a number of properties,which make them suitable for expressing the uncertain information of medical diagnoses and treatments in group decision-making(GDM)problems.To choose the most appropriate surgical treatment scheme for a patient with localized renal cell carcinoma(RCC)(T1 stage kidney tumor),this article needs to develop an effective GDM model based on the fuzzy multivalued evaluation information of the renal cancer patients.First,we propose a conversionmethod of transforming FMSs into entropy fuzzy sets(EFSs)based on the mean and Shannon entropy of a fuzzy sequence in FMS to reasonably simplify the information expression and operations of FMSs and define the score function of an entropy fuzzy element(EFE)for ranking EFEs.Second,we present the Aczel-Alsina t-norm and t-conorm operations of EFEs and the EFE Aczel-Alsina weighted arithmetic averaging(EFEAAWAA)and EFE Aczel-Alsina weighted geometric averaging(EFEAAWGA)operators.Third,we develop a multicriteria GDM model of renal cancer surgery options in the setting of FMSs.Finally,the proposed GDM model is applied to two clinical cases of renal cancer patients to choose the best surgical treatment scheme for a renal cancer patient in the setting of FMSs.The selected results of two clinical cases verify the efficiency and rationality of the proposed GDM model in the setting of FMSs.展开更多
The notion of the interval-valued intuitionistic fuzzy set (IVIFS) is a generalization of that of the Atanassov's intuitionistic fuzzy set. The fundamental characteristic of IVIFS is that the values of its membersh...The notion of the interval-valued intuitionistic fuzzy set (IVIFS) is a generalization of that of the Atanassov's intuitionistic fuzzy set. The fundamental characteristic of IVIFS is that the values of its membership function and non-membership function are intervals rather than exact numbers. There are various averaging operators defined for IVlFSs. These operators are not monotone with respect to the total order of IVIFS, which is undesirable. This paper shows how such averaging operators can be represented by using additive generators of the product triangular norm, which simplifies and extends the existing constructions. Moreover, two new aggregation operators based on the t.ukasiewicz triangular norm are proposed, which are monotone with respect to the total order of IVIFS. Finally, an application of the interval-valued intuitionistic fuzzy weighted averaging operator is given to multiple criteria decision making.展开更多
Based on the properties of ordered weighted averaging (OWA) operator and regular increasing monotone (RIM) quantifier, three methods for generating monotonic OWA operator weights are proposed. They are geometric OWA o...Based on the properties of ordered weighted averaging (OWA) operator and regular increasing monotone (RIM) quantifier, three methods for generating monotonic OWA operator weights are proposed. They are geometric OWA operator weights, equidifferent OWA operator weights and the modified RIM quantifier OWA weights. Compared with most of the common OWA methods for generating weights, the methods proposed in this paper are more intuitive and efficient in computation. And as there are more than one solution in most cases, the decision maker can set some initial condition and chooses the appropriate solution in the real decision process, which increases the flexibility of decision making to some extent. All these three OWA methods for generating weights are illustrated by numerical examples.展开更多
Based on the quantifier guided method,an ordered weighted averaging(OWA)weights generating method under given orness level with regular increasing monotone(RIM)quantifiers is proposed.Then the RIM quantifier based OWA...Based on the quantifier guided method,an ordered weighted averaging(OWA)weights generating method under given orness level with regular increasing monotone(RIM)quantifiers is proposed.Then the RIM quantifier based OWA weights generating method is modified to make the generated weights be monotonic,which can be used to express the decision maker's consistent preference information.Finally,both of these weights generating methods are extended to their generic forms,so that they can generate the OWA weights for any ordinary elements set with any given aggregated value.展开更多
The class of multiple attribute decision making (MADM) problems is studied, where the attribute values are intuitionistic fuzzy numbers, and the information about attribute weights is completely unknown. A score fun...The class of multiple attribute decision making (MADM) problems is studied, where the attribute values are intuitionistic fuzzy numbers, and the information about attribute weights is completely unknown. A score function is first used to calculate the score of each attribute value and a score matrix is constructed, and then it is transformed into a normalized score matrix. Based on the normalized score matrix, an entropy-based procedure is proposed to derive attribute weights. Furthermore, the additive weighted averaging operator is utilized to fuse all the normalized scores into the overall scores of alternatives, by which the ranking of all the given alternatives is obtained. This paper is concluded by extending the above results to interval-valued intuitionistic fuzzy set theory, and an illustrative example is also provided.展开更多
As the generalization of intuitionistic fuzzy set(IFS) and Pythagorean fuzzy set(PFS),the q-rung orthopair fuzzy set(q-ROFS) has emerged as a more meaningful and effective tool to solve multiple attribute group decisi...As the generalization of intuitionistic fuzzy set(IFS) and Pythagorean fuzzy set(PFS),the q-rung orthopair fuzzy set(q-ROFS) has emerged as a more meaningful and effective tool to solve multiple attribute group decision making(MAGDM) problems in management and scientific domains.The MABAC(multi-attributive border approximation area comparison) model,which handles the complex and uncertain decision making issues by computing the distance between each alternative and the bored approximation area(BAA),has been investigated by an increasing number of researchers more recent years.In our article,consider the conventional MABAC model and some fundamental theories of q-rung orthopair fuzzy set(q-ROFS),we shall introduce the q-rung orthopair fuzzy MABAC model to solve MADM problems.at first,we briefly review some basic theories related to q-ROFS and conventional MABAC model.Furthermore,the q-rung orthopair fuzzy MABAC model is built and the decision making steps are described.In the end,An actual MADM application has been given to testify this new model and some comparisons between this novel MABAC modeL and two q-ROFNs aggregation operators are provided to further demonstrate the merits of the q-rung orthopair fuzzy MABAC model.展开更多
A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four step...A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.展开更多
The existing concepts of picture fuzzy sets(PFS),spherical fuzzy sets(SFSs),T-spherical fuzzy sets(T-SFSs)and neutrosophic sets(NSs)have numerous applications in decision-making problems,but they have various strict l...The existing concepts of picture fuzzy sets(PFS),spherical fuzzy sets(SFSs),T-spherical fuzzy sets(T-SFSs)and neutrosophic sets(NSs)have numerous applications in decision-making problems,but they have various strict limitations for their satisfaction,dissatisfaction,abstain or refusal grades.To relax these strict constraints,we introduce the concept of spherical linearDiophantine fuzzy sets(SLDFSs)with the inclusion of reference or control parameters.A SLDFSwith parameterizations process is very helpful formodeling uncertainties in themulti-criteria decisionmaking(MCDM)process.SLDFSs can classify a physical systemwith the help of reference parameters.We discuss various real-life applications of SLDFSs towards digital image processing,network systems,vote casting,electrical engineering,medication,and selection of optimal choice.We show some drawbacks of operations of picture fuzzy sets and their corresponding aggregation operators.Some new operations on picture fuzzy sets are also introduced.Some fundamental operations on SLDFSs and different types of score functions of spherical linear Diophantine fuzzy numbers(SLDFNs)are proposed.New aggregation operators named spherical linear Diophantine fuzzy weighted geometric aggregation(SLDFWGA)and spherical linear Diophantine fuzzy weighted average aggregation(SLDFWAA)operators are developed for a robust MCDM approach.An application of the proposed methodology with SLDF information is illustrated.The comparison analysis of the final ranking is also given to demonstrate the validity,feasibility,and efficiency of the proposed MCDM approach.展开更多
基金The Technological Innovation Foundation of NanjingForestry University(No.163060033).
文摘The ordered weighted geometric averaging(OWGA) operator is extended to accommodate uncertain conditions where all input arguments take the forms of interval numbers. First, a possibility degree formula for the comparison between interval numbers is introduced. It is proved that the introduced formula is equivalent to the existing formulae, and also some desired properties of the possibility degree is presented. Secondly, the uncertain OWGA operator is investigated in which the associated weighting parameters cannot be specified, but value ranges can be obtained and the associated aggregated values of an uncertain OWGA operator are known. A linear objective-programming model is established; by solving this model, the associated weights vector of an uncertain OWGA operator can be determined, and also the estimated aggregated values of the alternatives can be obtained. Then the alternatives can be ranked by the comparison of the estimated aggregated values using the possibility degree formula. Finally, a numerical example is given to show the feasibility and effectiveness of the developed method.
基金funding this work through General Research Project under Grant No.GRP/93/43.
文摘Hypersoft set theory is a most advanced form of soft set theory and an innovative mathematical tool for dealing with unclear complications.Pythagorean fuzzy hypersoft set(PFHSS)is the most influential and capable leeway of the hypersoft set(HSS)and Pythagorean fuzzy soft set(PFSS).It is also a general form of the intuitionistic fuzzy hypersoft set(IFHSS),which provides a better and more perfect assessment of the decision-making(DM)process.The fundamental objective of this work is to enrich the precision of decision-making.A novel mixed aggregation operator called Pythagorean fuzzy hypersoft Einstein weighted geometric(PFHSEWG)based on Einstein’s operational laws has been developed.Some necessary properties,such as idempotency,boundedness,and homogeneity,have been presented for the anticipated PFHSEWG operator.Multi-criteria decision-making(MCDM)plays an active role in dealing with the complications of manufacturing design for material selection.However,conventional methods of MCDM usually produce inconsistent results.Based on the proposed PFHSEWG operator,a robust MCDM procedure for material selection in manufacturing design is planned to address these inconveniences.The expected MCDM method for material selection(MS)of cryogenic storing vessels has been established in the real world.Significantly,the planned model for handling inaccurate data based on PFHSS is more operative and consistent.
基金supported by the National Natural Science Foundation of China (70871117 70571086)
文摘Multiattribute decision making(MADM) problems, in which the weights and ratings of alternatives are expressed with intuitionistic fuzzy(IF) sets, are investigated.Firstly, the relative degrees of membership and the relative degrees of non-membership are formulated as IF sets, the weights and values of alternatives on both qualitative and quantitative attributes may be expressed as IF sets in a unified way.Then a MADM method based on generalized ordered weighted averaging operators is proposed.The proposed method is illustrated with a numerical example.
基金supported by the National Natural Science Foundation of China (70771025)the Fundamental Research Funds for the Central Universities of Hohai University (2009B04514)Humanities and Social Sciences Foundations of Ministry of Education of China(10YJA630067)
文摘The multiple attribute decision making problems are studied, in which the information about attribute weights is partly known and the attribute values take the form of intuitionistic fuzzy numbers. The operational laws of intuitionistic fuzzy numbers are introduced, and the score function and accuracy function are presented to compare the intuitionistic fuzzy numbers. The intuitionistic fuzzy ordered weighted averaging (IFOWA) operator which is an extension of the well-known ordered weighted averaging (OWA) operator is investigated to aggregate the intuitionistic fuzzy information. In order to determine the weights of intuitionistic fuzzy ordered weighted averaging operator, a linear goal programming procedure is proposed for learning the weights from data. Finally, an example is illustrated to verify the effectiveness and practicability of the developed method.
文摘The primary goal of this research is to determine the optimal agricultural field selection that would most effectively support manufacturing producers in manufacturing production while accounting for unpredictability and reliability in their decision-making.The PFS is known to address the levels of participation and non-participation.To begin,we introduce the novel concept of a PFZN,which is a hybrid structure of Pythagorean fuzzy sets and the ZN.The PFZN is graded in terms of membership and non-membership,as well as reliability,which provides a strong advice in real-world decision support concerns.The PFZN is a useful tool for dealing with uncertainty in decision-aid problems.The PFZN is a practical way for dealing with such uncertainties in decision-aid problems.The list of aggregation operators:PFZN Einstein weighted averaging and PFZN Einstein weighted geometric,is established under the novel Pythagorean fuzzy ZNs.It is a more precise mathematical instrument for dealing with precision and uncertainty.The core of this research is to develop a numerical algorithmto tackle the uncertainty in real-life problems using PFZNs.To show the applicability and effectiveness of the proposed algorithm,we illustrate the numerical case study related to determining the optimal agricultural field.The main purpose of this work is to describe the extended EDAS approach,then compare the proposed methodology with many other methodologies now in use,and then demonstrate how the suggested methodology may be applied to real-world problems.In addition,the final ranking results that were obtained by the devised techniques weremore efficient and dependable in comparison to the results provided by other methods presented in the literature.
文摘Supply chain management is an essential part of an organisation's sustainable programme.Understanding the concentration of natural environment,public,and economic influence and feasibility of your suppliers and purchasers is becoming progressively familiar as all industries are moving towards a massive sustainable potential.To handle such sort of developments in supply chain management the involvement of fuzzy settings and their generalisations is playing an important role.Keeping in mind this role,the aim of this study is to analyse the role and involvement of complex q-rung orthopair normal fuzzy(CQRONF)information in supply chain management.The major impact of this theory is to analyse the notion of confidence CQRONF weighted averaging,confidence CQRONF ordered weighted averaging,confidence CQRONF hybrid averaging,confidence CQRONF weighted geometric,confidence CQRONF ordered weighted geometric,confidence CQRONF hybrid geometric operators and try to diagnose various properties and results.Furthermore,with the help of the CRITIC and VIKOR models,we diagnosed the novel theory of the CQRONF-CRITIC-VIKOR model to check the sensitivity analysis of the initiated method.Moreover,in the availability of diagnosed operators,we constructed a multi-attribute decision-making tool for finding a beneficial sustainable supplier to handle complex dilemmas.Finally,the initiated operator's efficiency is proved by comparative analysis.
基金This study has received funding by the Science and Technology Plan Project of Keqiao District(No.2020KZ58).
文摘Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their scientifical and reasonable information expression and group decision-making model for renal cancer patients.Fuzzy multi-sets(FMSs)have a number of properties,which make them suitable for expressing the uncertain information of medical diagnoses and treatments in group decision-making(GDM)problems.To choose the most appropriate surgical treatment scheme for a patient with localized renal cell carcinoma(RCC)(T1 stage kidney tumor),this article needs to develop an effective GDM model based on the fuzzy multivalued evaluation information of the renal cancer patients.First,we propose a conversionmethod of transforming FMSs into entropy fuzzy sets(EFSs)based on the mean and Shannon entropy of a fuzzy sequence in FMS to reasonably simplify the information expression and operations of FMSs and define the score function of an entropy fuzzy element(EFE)for ranking EFEs.Second,we present the Aczel-Alsina t-norm and t-conorm operations of EFEs and the EFE Aczel-Alsina weighted arithmetic averaging(EFEAAWAA)and EFE Aczel-Alsina weighted geometric averaging(EFEAAWGA)operators.Third,we develop a multicriteria GDM model of renal cancer surgery options in the setting of FMSs.Finally,the proposed GDM model is applied to two clinical cases of renal cancer patients to choose the best surgical treatment scheme for a renal cancer patient in the setting of FMSs.The selected results of two clinical cases verify the efficiency and rationality of the proposed GDM model in the setting of FMSs.
基金supported by the National Natural Science Foundation of China (71171048)the Scientific Research and Innovation Project for College Graduates of Jiangsu Province (CXZZ11 0185)+1 种基金the Scientific Research Foundation of Graduate School of Southeast University (YBJJ1135)the State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University (RCS2011K002)
文摘The notion of the interval-valued intuitionistic fuzzy set (IVIFS) is a generalization of that of the Atanassov's intuitionistic fuzzy set. The fundamental characteristic of IVIFS is that the values of its membership function and non-membership function are intervals rather than exact numbers. There are various averaging operators defined for IVlFSs. These operators are not monotone with respect to the total order of IVIFS, which is undesirable. This paper shows how such averaging operators can be represented by using additive generators of the product triangular norm, which simplifies and extends the existing constructions. Moreover, two new aggregation operators based on the t.ukasiewicz triangular norm are proposed, which are monotone with respect to the total order of IVIFS. Finally, an application of the interval-valued intuitionistic fuzzy weighted averaging operator is given to multiple criteria decision making.
文摘Based on the properties of ordered weighted averaging (OWA) operator and regular increasing monotone (RIM) quantifier, three methods for generating monotonic OWA operator weights are proposed. They are geometric OWA operator weights, equidifferent OWA operator weights and the modified RIM quantifier OWA weights. Compared with most of the common OWA methods for generating weights, the methods proposed in this paper are more intuitive and efficient in computation. And as there are more than one solution in most cases, the decision maker can set some initial condition and chooses the appropriate solution in the real decision process, which increases the flexibility of decision making to some extent. All these three OWA methods for generating weights are illustrated by numerical examples.
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2006BAH02A06)
文摘Based on the quantifier guided method,an ordered weighted averaging(OWA)weights generating method under given orness level with regular increasing monotone(RIM)quantifiers is proposed.Then the RIM quantifier based OWA weights generating method is modified to make the generated weights be monotonic,which can be used to express the decision maker's consistent preference information.Finally,both of these weights generating methods are extended to their generic forms,so that they can generate the OWA weights for any ordinary elements set with any given aggregated value.
基金supported by the National Science Fund for Distinguished Young Scholars of China(70625005).
文摘The class of multiple attribute decision making (MADM) problems is studied, where the attribute values are intuitionistic fuzzy numbers, and the information about attribute weights is completely unknown. A score function is first used to calculate the score of each attribute value and a score matrix is constructed, and then it is transformed into a normalized score matrix. Based on the normalized score matrix, an entropy-based procedure is proposed to derive attribute weights. Furthermore, the additive weighted averaging operator is utilized to fuse all the normalized scores into the overall scores of alternatives, by which the ranking of all the given alternatives is obtained. This paper is concluded by extending the above results to interval-valued intuitionistic fuzzy set theory, and an illustrative example is also provided.
基金supported by the National Natural Science Foundation of China under Grant No.71571128the Humanities and Social Sciences Foundation of Ministry of Education of the People's Republic of China(No.14XJCZH002,15YJCZH138)。
文摘As the generalization of intuitionistic fuzzy set(IFS) and Pythagorean fuzzy set(PFS),the q-rung orthopair fuzzy set(q-ROFS) has emerged as a more meaningful and effective tool to solve multiple attribute group decision making(MAGDM) problems in management and scientific domains.The MABAC(multi-attributive border approximation area comparison) model,which handles the complex and uncertain decision making issues by computing the distance between each alternative and the bored approximation area(BAA),has been investigated by an increasing number of researchers more recent years.In our article,consider the conventional MABAC model and some fundamental theories of q-rung orthopair fuzzy set(q-ROFS),we shall introduce the q-rung orthopair fuzzy MABAC model to solve MADM problems.at first,we briefly review some basic theories related to q-ROFS and conventional MABAC model.Furthermore,the q-rung orthopair fuzzy MABAC model is built and the decision making steps are described.In the end,An actual MADM application has been given to testify this new model and some comparisons between this novel MABAC modeL and two q-ROFNs aggregation operators are provided to further demonstrate the merits of the q-rung orthopair fuzzy MABAC model.
基金supported by the National Basic Research Program of China (973 Program) (2010CB734104)
文摘A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.
文摘The existing concepts of picture fuzzy sets(PFS),spherical fuzzy sets(SFSs),T-spherical fuzzy sets(T-SFSs)and neutrosophic sets(NSs)have numerous applications in decision-making problems,but they have various strict limitations for their satisfaction,dissatisfaction,abstain or refusal grades.To relax these strict constraints,we introduce the concept of spherical linearDiophantine fuzzy sets(SLDFSs)with the inclusion of reference or control parameters.A SLDFSwith parameterizations process is very helpful formodeling uncertainties in themulti-criteria decisionmaking(MCDM)process.SLDFSs can classify a physical systemwith the help of reference parameters.We discuss various real-life applications of SLDFSs towards digital image processing,network systems,vote casting,electrical engineering,medication,and selection of optimal choice.We show some drawbacks of operations of picture fuzzy sets and their corresponding aggregation operators.Some new operations on picture fuzzy sets are also introduced.Some fundamental operations on SLDFSs and different types of score functions of spherical linear Diophantine fuzzy numbers(SLDFNs)are proposed.New aggregation operators named spherical linear Diophantine fuzzy weighted geometric aggregation(SLDFWGA)and spherical linear Diophantine fuzzy weighted average aggregation(SLDFWAA)operators are developed for a robust MCDM approach.An application of the proposed methodology with SLDF information is illustrated.The comparison analysis of the final ranking is also given to demonstrate the validity,feasibility,and efficiency of the proposed MCDM approach.