期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Q-Learning-Based Teaching-Learning Optimization for Distributed Two-Stage Hybrid Flow Shop Scheduling with Fuzzy Processing Time 被引量:1
1
作者 Bingjie Xi Deming Lei 《Complex System Modeling and Simulation》 2022年第2期113-129,共17页
Two-stage hybrid flow shop scheduling has been extensively considered in single-factory settings.However,the distributed two-stage hybrid flow shop scheduling problem(DTHFSP)with fuzzy processing time is seldom invest... Two-stage hybrid flow shop scheduling has been extensively considered in single-factory settings.However,the distributed two-stage hybrid flow shop scheduling problem(DTHFSP)with fuzzy processing time is seldom investigated in multiple factories.Furthermore,the integration of reinforcement learning and metaheuristic is seldom applied to solve DTHFSP.In the current study,DTHFSP with fuzzy processing time was investigated,and a novel Q-learning-based teaching-learning based optimization(QTLBO)was constructed to minimize makespan.Several teachers were recruited for this study.The teacher phase,learner phase,teacher’s self-learning phase,and learner’s self-learning phase were designed.The Q-learning algorithm was implemented by 9 states,4 actions defined as combinations of the above phases,a reward,and an adaptive action selection,which were applied to dynamically adjust the algorithm structure.A number of experiments were conducted.The computational results demonstrate that the new strategies of QTLBO are effective;furthermore,it presents promising results on the considered DTHFSP. 展开更多
关键词 teaching-learning based optimization Q-learning algorithm two-stage hybrid flow shop scheduling fuzzy processing time
原文传递
Mathematical Modeling and a Multiswarm Collaborative Optimization Algorithm for Fuzzy Integrated Process Planning and Scheduling Problem
2
作者 Qihao Liu Cuiyu Wang +1 位作者 Xinyu Li Liang Gao 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第2期285-304,共20页
Considering both process planning and shop scheduling in manufacturing can fully utilize their complementarities,resulting in improved rationality of process routes and high-quality and efficient production. Hence,the... Considering both process planning and shop scheduling in manufacturing can fully utilize their complementarities,resulting in improved rationality of process routes and high-quality and efficient production. Hence,the study of Integrated Process Planning and Scheduling (IPPS) has become a hot topic in the current production field. However,when performing this integrated optimization,the uncertainty of processing time is a realistic key point that cannot be neglected. Thus,this paper investigates a Fuzzy IPPS (FIPPS) problem to minimize the maximum fuzzy completion time. Compared with the conventional IPPS problem,FIPPS considers the fuzzy process time in the uncertain production environment,which is more practical and realistic. However,it is difficult to solve the FIPPS problem due to the complicated fuzzy calculating rules. To solve this problem,this paper formulates a novel fuzzy mathematical model based on the process network graph and proposes a MultiSwarm Collaborative Optimization Algorithm (MSCOA) with an integrated encoding method to improve the optimization. Different swarms evolve in various directions and collaborate in a certain number of iterations. Moreover,the critical path searching method is introduced according to the triangular fuzzy number,allowing for the calculation of rules to enhance the local searching ability of MSCOA. The numerical experiments extended from the well-known Kim benchmark are conducted to test the performance of the proposed MSCOA. Compared with other competitive algorithms,the results obtained by MSCOA show significant advantages,thus proving its effectiveness in solving the FIPPS problem. 展开更多
关键词 Integrated Process Planning and Scheduling(IPPS) fuzzy processing time fuzzy completion time MultiSwarm Collaborative Optimization Algorithm(MSCOA)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部