Industrial Internet of Things(IIoT)service providers have become increasingly important in the manufacturing industry due to their ability to gather and process vast amounts of data from connected devices,enabling man...Industrial Internet of Things(IIoT)service providers have become increasingly important in the manufacturing industry due to their ability to gather and process vast amounts of data from connected devices,enabling manufacturers to improve operational efficiency,reduce costs,and enhance product quality.These platforms provide manufacturers with real-time visibility into their production processes and supply chains,allowing them to optimize operations and make informed decisions.In addition,IIoT service providers can help manufacturers create new revenue streams through the development of innovative products and services and enable them to leverage the benefits of emerging technologies such as Artificial Intelligence(AI)and machine learning.Overall,the implementation of IIoT platforms in the manufacturing industry is crucial for companies seeking to remain competitive and meet the ever-increasing demands of customers in the digital age.In this study,the evaluation criteria to be considered in the selection of IIoT service provider in small andmedium-sized(SME)manufacturing enterprises will be determined and IIoT service providers alternatives will be evaluated using the technique for order preference by similarity to an ideal solution(TOPSIS)method based on circular intuitionistic fuzzy sets.Based on the assessments conducted in accordance with the literature review and expert consultations,a set of 8 selection criteria has been established.These criteria encompass industry expertise,customer support,flexibility and scalability,security,cost-effectiveness,reliability,data analytics,as well as compatibility and usability.Upon evaluating these criteria,it was observed that the security criterion holds the highest significance,succeeded by cost-effectiveness,data analytics,flexibility and scalability,reliability,and customer support criteria,in descending order of importance.Following the evaluation of seven distinct alternatives against these criteria,it was deduced that the A6 alternative,a German service provider,emerged as the most favorable option.The identical issue was addressed utilizing sensitivity analysis alongside various multi-criteria decision-making(MCDM)methods,and after comprehensive evaluation,the outcomes were assessed.Spearman’s correlation coefficient was computed to ascertain the association between the rankings derived from solving the problem using diverse MCDM methods.展开更多
This socialized environment among educated and developed people causes themto focusmore on their appearance and health,which turns them towards medical-related treatments,leading us to discuss anti-aging treatment met...This socialized environment among educated and developed people causes themto focusmore on their appearance and health,which turns them towards medical-related treatments,leading us to discuss anti-aging treatment methods for each age group,particularly for urban people who are interested in this.Some anti-aging therapies are used to address the alterations brought on by aging in human life without the need for surgery or negative effects.Five anti-aging therapies such as microdermabrasion or dermabrasion,laser resurfacing anti-aging skin treatments,chemical peels,dermal fillers for aged skin,and botox injections are considered in this study.Based on the criteria of safety risk,investment cost,customer happiness,and side effects,the optimal alternative is picked.As a result,a NormalWiggly Hesitant Pythagorean Fuzzy Set(NWHPFS)is constructed and used in Multi-Criteria Decision-Making(MCDM)using traditional wavy mathematical approaches.The entropy approach is utilized to determine weight values,and the Normal Wiggly Hesitant Pythagorean-VlseKriterijumska Optimizacija I Kompromisno Resenje(NWHPF-VIKOR)method is utilized to rank alternatives using MCDM methodologies.Sensitivity analysis and comparative analysis were performed to ensure the robustness and reliability of the proposed method.The smart final choice will undoubtedly assist Decision Makers(DM)in making the right judgments,and the MCDM approach will undoubtedly assist individuals in understanding the medicine.展开更多
Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and stra...Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and strategies to assist them in realizing sustainable development.Because of the speculative character of human opinions,supplier selection frequently includes unreliable data,and the interval-valued Pythagorean fuzzy soft set(IVPFSS)provides an exceptional capacity to cope with excessive fuzziness,inconsistency,and inexactness through the decision-making procedure.The main goal of this study is to come up with new operational laws for interval-valued Pythagorean fuzzy soft numbers(IVPFSNs)and create two interaction operators-the intervalvalued Pythagorean fuzzy soft interaction weighted average(IVPFSIWA)and the interval-valued Pythagorean fuzzy soft interaction weighted geometric(IVPFSIWG)operators,and analyze their properties.These operators are highly advantageous in addressing uncertain problems by considering membership and non-membership values within intervals,providing a superior solution to other methods.Moreover,specialist judgments were calculated by the MCGDM technique,supporting the use of interaction AOs to regulate the interdependence and fundamental partiality of green supplier assessment aspects.Lastly,a statistical clarification of the planned method for green supplier selection is presented.展开更多
As an extension of overlap functions, pseudo-semi-overlap functions are a crucial class of aggregation functions. Therefore, (I, PSO)-fuzzy rough sets are introduced, utilizing pseudo-semi-overlap functions, and furth...As an extension of overlap functions, pseudo-semi-overlap functions are a crucial class of aggregation functions. Therefore, (I, PSO)-fuzzy rough sets are introduced, utilizing pseudo-semi-overlap functions, and further extended for applications in image edge extraction. Firstly, a new clustering function, the pseudo-semi-overlap function, is introduced by eliminating the symmetry and right continuity present in the overlap function. The relaxed nature of this function enhances its applicability in image edge extraction. Secondly, the definitions of (I, PSO)-fuzzy rough sets are provided, using (I, PSO)-fuzzy rough sets, a pair of new fuzzy mathematical morphological operators (IPSOFMM operators) is proposed. Finally, by combining the fuzzy C-means algorithm and IPSOFMM operators, a novel image edge extraction algorithm (FCM-IPSO algorithm) is proposed and implemented. Compared to existing algorithms, the FCM-IPSO algorithm exhibits more image edges and a 73.81% decrease in the noise introduction rate. The outstanding performance of (I, PSO)-fuzzy rough sets in image edge extraction demonstrates their practical application value.展开更多
This research is devoted to diagnosing water-borne infectious diseases caused by floods employing a novel diagnosis approach,the Einstein hybrid structure of q-rung orthopair fuzzy soft set.This approach integrates pa...This research is devoted to diagnosing water-borne infectious diseases caused by floods employing a novel diagnosis approach,the Einstein hybrid structure of q-rung orthopair fuzzy soft set.This approach integrates parts of fuzzy logic and soft set theory to develop a robust alternative for disease detection in stressful situations,especially in areas affected by floods.Compared to the traditional intuitionistic fuzzy soft set and Pythagorean fuzzy soft set,the q-rung orthopair fuzzy soft set(q-ROFSS)adequately incorporates unclear and indeterminate facts.The major objective of this investigation is to formulate the q-rung orthopair fuzzy soft Einstein hybrid weighted average(q-ROFSEHWA)operator and its specific characteristics.Moreover,our stated operator is implementing intelligentmulti-criteria group decision-making(MCGDM)methodology.Floods are severe natural catastrophes that raise the risk of diseases and epidemics,particularly those caused by contaminants in the water,such as gastrointestinal diseases,respiratory infections,vector-borne diseases,skin infections,and water-borne parasites.The designed MCGDM strategy tackles the prevalence of certain conditions in flood-affected patients.A comparative investigation determined that the suggested method for detecting water-borne infectious disease due to floods is more effective and productive than conventional methods because of its logical structure.展开更多
In this paper,a decision-making problem with a q-rung orthopair fuzzy hypersoft environment is developed,and two operators of ordered weighted average and induced ordered weighted average are developed.Several fundame...In this paper,a decision-making problem with a q-rung orthopair fuzzy hypersoft environment is developed,and two operators of ordered weighted average and induced ordered weighted average are developed.Several fundamental features are also derived.The induced ordered weighted average operator is essential in a q-ROFH environment as the induced ordered aggregation operators are special cases of the existing aggregation operators that already exist in q-ROFH environments.The main function of these operators is to help decision-makers gain a complete understanding of uncertain facts.The proposed aggregation operator is applied to a decision-making problem,with the aim of selecting the most promising real estate project for investment.展开更多
The two universes multi-granularity fuzzy rough set model is an effective tool for handling uncertainty problems between two domains with the help of binary fuzzy relations. This article applies the idea of neighborho...The two universes multi-granularity fuzzy rough set model is an effective tool for handling uncertainty problems between two domains with the help of binary fuzzy relations. This article applies the idea of neighborhood rough sets to two universes multi-granularity fuzzy rough sets, and discusses the two-universes multi-granularity neighborhood fuzzy rough set model. Firstly, the upper and lower approximation operators are defined in the two universes multi-granularity neighborhood fuzzy rough set model. Secondly, the properties of the upper and lower approximation operators are discussed. Finally, the properties of the two universes multi-granularity neighborhood fuzzy rough set model are verified through case studies.展开更多
The purpose of this study is to reduce the uncertainty in the calculation process on hesitant fuzzy sets(HFSs).The innovation of this study is to unify the cardinal numbers of hesitant fuzzy elements(HFEs)in a special...The purpose of this study is to reduce the uncertainty in the calculation process on hesitant fuzzy sets(HFSs).The innovation of this study is to unify the cardinal numbers of hesitant fuzzy elements(HFEs)in a special way.Firstly,a probability density function is assigned for any given HFE.Thereafter,equal-probability transformation is introduced to transform HFEs with different cardinal numbers on the condition into the same probability density function.The characteristic of this transformation is that the higher the consistency of the membership degrees in HFEs,the higher the credibility of the mentioned membership degrees is,then,the bigger the probability density values for them are.According to this transformation technique,a set of novel distance measures on HFSs is provided.Finally,an illustrative example of intersection traffic control is introduced to show the usefulness of the given distance measures.The example also shows that this study is a good complement to operation theories on HFSs.展开更多
In previous research on two-sided matching(TSM)decision,agents’preferences were often given in the form of exact values of ordinal numbers and linguistic phrase term sets.Nowdays,the matching agent cannot perform the...In previous research on two-sided matching(TSM)decision,agents’preferences were often given in the form of exact values of ordinal numbers and linguistic phrase term sets.Nowdays,the matching agent cannot perform the exact evaluation in the TSM situations due to the great fuzziness of human thought and the complexity of reality.Probability hesitant fuzzy sets,however,have grown in popularity due to their advantages in communicating complex information.Therefore,this paper develops a TSM decision-making approach with multi-attribute probability hesitant fuzzy sets and unknown attribute weight information.The agent attribute weight vector should be obtained by using the maximum deviation method and Hamming distance.The probabilistic hesitancy fuzzy information matrix of each agent is then arranged to determine the comprehensive evaluation of two matching agent sets.The agent satisfaction degree is calculated using the technique for order preference by similarity to ideal solution(TOPSIS).Additionally,the multi-object programming technique is used to establish a TSM method with the objective of maximizing the agent satisfaction of two-sided agents,and the matching schemes are then established by solving the built model.The study concludes by providing a real-world supply-demand scenario to illustrate the effectiveness of the proposed method.The proposed method is more flexible than prior research since it expresses evaluation information using probability hesitating fuzzy sets and can be used in scenarios when attribute weight information is unclear.展开更多
Nowadays, picture fuzzy set theory is a flourishing field in mathematics with uncertainty by incorporating the concept of positive, negative and neutral membership degrees of an object. A traditional crisp relation re...Nowadays, picture fuzzy set theory is a flourishing field in mathematics with uncertainty by incorporating the concept of positive, negative and neutral membership degrees of an object. A traditional crisp relation represents the satisfaction or the dissatisfaction of relationship, connection or correspondence between the objects of two or more sets. However, there are some problems that can’t be solved through classical relationships, such as the relationship between two objects being vague. In those situations, picture fuzzy relation over picture fuzzy sets is an important and powerful concept which is suitable for describing correspondences between two vague objects. It represents the strength of association of the elements of picture fuzzy sets. It plays an important role in picture fuzzy modeling, inference and control system and also has important applications in relational databases, approximate reasoning, preference modeling, medical diagnosis, etc. In this article, we define picture fuzzy relations over picture fuzzy sets, including some other fundamental definitions with illustrations. The max-min and min-max compositions of picture fuzzy relations are defined in the light of picture fuzzy sets and discussed some properties related to them. The reflexivity, symmetry and transitivity of a picture fuzzy relation are described over a picture fuzzy set. Finally, various properties are explored related to the picture fuzzy relations over a picture fuzzy set.展开更多
Up to now, the study on the cardinal number of fuzzy sets has advanced at on pace since it is very hard to give it an appropriate definition. Althrough for it in [1], it is with some harsh terms and is not reasonable ...Up to now, the study on the cardinal number of fuzzy sets has advanced at on pace since it is very hard to give it an appropriate definition. Althrough for it in [1], it is with some harsh terms and is not reasonable as we point out in this paper. In the paper, we give a general definition of fuzzy cardinal numbers. Based on this definition, we not only obtain a large part of results with re spect to cardinal numbers, but also give a few of new properties of fuzzy cardinal numbers.展开更多
A method with the fuzzy entropy for measuring fuzziness to fuzzy problem in rough sets is proposed. A new sort of the fuzzy entropy is given. The calculating formula and the equivalent expression method with the fuzzy...A method with the fuzzy entropy for measuring fuzziness to fuzzy problem in rough sets is proposed. A new sort of the fuzzy entropy is given. The calculating formula and the equivalent expression method with the fuzzy entropy in rough sets based on equivalence relation are provided, and the properties of the fuzzy entropy are proved. The fuzzy entropy based on equivalent relation is extended to generalize the fuzzy entropy based on general binary relation, and the calculating formula and the equivalent expression of the generalized fuzzy entropy are also given. Finally, an example illustrates the way for getting the fuzzy entropy. Results show that the fuzzy entropy can conveniently measure the fuzziness in rough sets.展开更多
The concept of the degree of similarity between interval-valued intuitionistic fuzzy sets (IVIFSs) is introduced, and some distance measures between IVIFSs are defined based on the Hamming distance, the normalized H...The concept of the degree of similarity between interval-valued intuitionistic fuzzy sets (IVIFSs) is introduced, and some distance measures between IVIFSs are defined based on the Hamming distance, the normalized Hamming distance, the weighted Hamming distance, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance, etc. Then, by combining the Hausdorff metric with the Hamming distance, the Euclidean distance and their weighted versions, two other similarity measures between IVIFSs, i. e., the weighted Hamming distance based on the Hausdorff metric and the weighted Euclidean distance based on the Hausdorff metric, are defined, and then some of their properties are studied. Finally, based on these distance measures, some similarity measures between IVIFSs are defined, and the similarity measures are applied to pattern recognitions with interval-valued intuitionistic fuzzy information.展开更多
To enable the representation and reasoning for fuzzy ontologies with expressive fuzzy knowledge on the semantic web, a new fuzzy extension of description logics called vague ALC which is based on vague sets is present...To enable the representation and reasoning for fuzzy ontologies with expressive fuzzy knowledge on the semantic web, a new fuzzy extension of description logics called vague ALC which is based on vague sets is presented. The definition of vague set is introduced and then the syntax and semantics of vague ALC are formally defined. The forms of axioms and assertions in the vague ALC knowledge bases are specified. Finally, the tableau algorithm is developed for the reasoning in the vague ALC. The vague ALC based on vague set uses two degrees of membership instead of a single membership degree in the fuzzy sets and is more accurate in representing the imprecision in the degrees of membership. The vague ALC has more expressive power than ALC and can represent fuzzy knowledge and perform reasoning tasks based on them. Therefore, the vague ALC can enable the representation and reasoning for fuzzy ontologies with expressive fuzzy knowledge on the semantic web.展开更多
This paper uses Gaussian interval type-2 fuzzy se theory on historical traffic volume data processing to obtain a 24-hour prediction of traffic volume with high precision. A K-means clustering method is used in this p...This paper uses Gaussian interval type-2 fuzzy se theory on historical traffic volume data processing to obtain a 24-hour prediction of traffic volume with high precision. A K-means clustering method is used in this paper to get 5 minutes traffic volume variation as input data for the Gaussian interval type-2 fuzzy sets which can reflect the distribution of historical traffic volume in one statistical period. Moreover, the cluster with the largest collection of data obtained by K-means clustering method is calculated to get the key parameters of type-2 fuzzy sets, mean and standard deviation of the Gaussian membership function.Using the range of data as the input of Gaussian interval type-2 fuzzy sets leads to the range of traffic volume forecasting output with the ability of describing the possible range of the traffic volume as well as the traffic volume prediction data with high accuracy. The simulation results show that the average relative error is reduced to 8% based on the combined K-means Gaussian interval type-2 fuzzy sets forecasting method. The fluctuation range in terms of an upper and a lower forecasting traffic volume completely envelopes the actual traffic volume and reproduces the fluctuation range of traffic flow.展开更多
The function of the air target threat evaluation (TE) is the foundation for weapons allocation and senor resources management within the surface air defense. The multi-attribute evaluation methodology is utilized to...The function of the air target threat evaluation (TE) is the foundation for weapons allocation and senor resources management within the surface air defense. The multi-attribute evaluation methodology is utilized to address the issue of the TE in which the tactic features of the detected target are treated as evaluation attributes. Meanwhile, the intuitionistic fuzzy set (IFS) is employed to deal with information uncertainty in the TE process. Furthermore, on the basis of the entropy weight and inclusion-comparison probability, a hybrid TE method is developed. In order to accommodate the demands of naturalistic decision making, the proposed method allows air defense commanders to express their intuitive opinions besides incorporating into the threat features of the detected target. An illustrative example is provided to indicate the feasibility and advantage of the proposed method.展开更多
Similarity measure is an essential tool to compare and determine the degree of similarity between intuitionistic fuzzy sets (IFSs). In this paper, a new similarity measure between intuitionistic fuzzy sets based on th...Similarity measure is an essential tool to compare and determine the degree of similarity between intuitionistic fuzzy sets (IFSs). In this paper, a new similarity measure between intuitionistic fuzzy sets based on the mid points of transformed triangular fuzzy numbers is proposed. The proposed similarity measure provides reasonable results not only for the sets available in the literature but also gives very reasonable results, especially for fuzzy sets as well as for most intuitionistic fuzzy sets. To provide supportive evidence, the proposed similarity measure is tested on certain sets available in literature and is also applied to pattern recognition and medical diagnosis problems. It is observed that the proposed similarity measure provides a very intuitive quantification.展开更多
Drought is one of the major natural disasters causing huge agricultural losses annually. Regional agricultural drought risk assessment has great significance for reducing regional disaster and agricultural drought los...Drought is one of the major natural disasters causing huge agricultural losses annually. Regional agricultural drought risk assessment has great significance for reducing regional disaster and agricultural drought losses. Based on the fuzzy characteristics of agricultural drought risk, variable fuzzy sets model was used for comprehensively assessing agricultural drought risk of Liaoning Province in China. A multi-layers and multi-indices assessment model was estab-lished according to variable fuzzy sets theory, and agricultural drought risk of all 14 prefecture-level cities was respec-tively estimated in terms of dangerousness, vulnerability, exposure and drought-resistibility. By calculating the combi-nation weights of four drought risk factors, agricultural drought risk grade of each city was obtained. Based on the as-sessment results, the spatial distribution maps of agricultural drought risk were drawn. The results shows that eastern cities have lower drought dangerousness than western cities in Liaoning Province totally. Most cities are located in low drought vulnerability region and high drought exposure region. Because of frequent and severe drought since 2000, most cities are located in lower drought-resistibility region. Comprehensive agricultural drought risk presents apparent spatial characteristics, escalating from the east to the west. Drought dangerousness is the most important factor influencing comprehensive agricultural drought risk. Through the spatial distribution maps of drought risk, decision makers could find out drought situation and make decisions on drought resistance conveniently.展开更多
The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy imp...The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy implications by means of a type of impli- cations and a parameter on the unit interval, then uses them to establish fully implicational reasoning methods for interval-valued fuzzy modus ponens (IFMP) and interval-valued fuzzy modus tel- lens (IFMT) problems. At the same time the reversibility properties of these methods are analyzed and the reversible conditions are given. It is shown that the existing unified forms of α-triple I (the abbreviation of triple implications) methods for FMP and FMT can be seen as the particular cases of our methods for IFMP and IFMT.展开更多
文摘Industrial Internet of Things(IIoT)service providers have become increasingly important in the manufacturing industry due to their ability to gather and process vast amounts of data from connected devices,enabling manufacturers to improve operational efficiency,reduce costs,and enhance product quality.These platforms provide manufacturers with real-time visibility into their production processes and supply chains,allowing them to optimize operations and make informed decisions.In addition,IIoT service providers can help manufacturers create new revenue streams through the development of innovative products and services and enable them to leverage the benefits of emerging technologies such as Artificial Intelligence(AI)and machine learning.Overall,the implementation of IIoT platforms in the manufacturing industry is crucial for companies seeking to remain competitive and meet the ever-increasing demands of customers in the digital age.In this study,the evaluation criteria to be considered in the selection of IIoT service provider in small andmedium-sized(SME)manufacturing enterprises will be determined and IIoT service providers alternatives will be evaluated using the technique for order preference by similarity to an ideal solution(TOPSIS)method based on circular intuitionistic fuzzy sets.Based on the assessments conducted in accordance with the literature review and expert consultations,a set of 8 selection criteria has been established.These criteria encompass industry expertise,customer support,flexibility and scalability,security,cost-effectiveness,reliability,data analytics,as well as compatibility and usability.Upon evaluating these criteria,it was observed that the security criterion holds the highest significance,succeeded by cost-effectiveness,data analytics,flexibility and scalability,reliability,and customer support criteria,in descending order of importance.Following the evaluation of seven distinct alternatives against these criteria,it was deduced that the A6 alternative,a German service provider,emerged as the most favorable option.The identical issue was addressed utilizing sensitivity analysis alongside various multi-criteria decision-making(MCDM)methods,and after comprehensive evaluation,the outcomes were assessed.Spearman’s correlation coefficient was computed to ascertain the association between the rankings derived from solving the problem using diverse MCDM methods.
基金funded by the Korean Government(MSIT)Grant NRF-2022R1C1C1006671.
文摘This socialized environment among educated and developed people causes themto focusmore on their appearance and health,which turns them towards medical-related treatments,leading us to discuss anti-aging treatment methods for each age group,particularly for urban people who are interested in this.Some anti-aging therapies are used to address the alterations brought on by aging in human life without the need for surgery or negative effects.Five anti-aging therapies such as microdermabrasion or dermabrasion,laser resurfacing anti-aging skin treatments,chemical peels,dermal fillers for aged skin,and botox injections are considered in this study.Based on the criteria of safety risk,investment cost,customer happiness,and side effects,the optimal alternative is picked.As a result,a NormalWiggly Hesitant Pythagorean Fuzzy Set(NWHPFS)is constructed and used in Multi-Criteria Decision-Making(MCDM)using traditional wavy mathematical approaches.The entropy approach is utilized to determine weight values,and the Normal Wiggly Hesitant Pythagorean-VlseKriterijumska Optimizacija I Kompromisno Resenje(NWHPF-VIKOR)method is utilized to rank alternatives using MCDM methodologies.Sensitivity analysis and comparative analysis were performed to ensure the robustness and reliability of the proposed method.The smart final choice will undoubtedly assist Decision Makers(DM)in making the right judgments,and the MCDM approach will undoubtedly assist individuals in understanding the medicine.
基金funded by King Saud University,Riyadh,Saudi Arabia.
文摘Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and strategies to assist them in realizing sustainable development.Because of the speculative character of human opinions,supplier selection frequently includes unreliable data,and the interval-valued Pythagorean fuzzy soft set(IVPFSS)provides an exceptional capacity to cope with excessive fuzziness,inconsistency,and inexactness through the decision-making procedure.The main goal of this study is to come up with new operational laws for interval-valued Pythagorean fuzzy soft numbers(IVPFSNs)and create two interaction operators-the intervalvalued Pythagorean fuzzy soft interaction weighted average(IVPFSIWA)and the interval-valued Pythagorean fuzzy soft interaction weighted geometric(IVPFSIWG)operators,and analyze their properties.These operators are highly advantageous in addressing uncertain problems by considering membership and non-membership values within intervals,providing a superior solution to other methods.Moreover,specialist judgments were calculated by the MCGDM technique,supporting the use of interaction AOs to regulate the interdependence and fundamental partiality of green supplier assessment aspects.Lastly,a statistical clarification of the planned method for green supplier selection is presented.
文摘As an extension of overlap functions, pseudo-semi-overlap functions are a crucial class of aggregation functions. Therefore, (I, PSO)-fuzzy rough sets are introduced, utilizing pseudo-semi-overlap functions, and further extended for applications in image edge extraction. Firstly, a new clustering function, the pseudo-semi-overlap function, is introduced by eliminating the symmetry and right continuity present in the overlap function. The relaxed nature of this function enhances its applicability in image edge extraction. Secondly, the definitions of (I, PSO)-fuzzy rough sets are provided, using (I, PSO)-fuzzy rough sets, a pair of new fuzzy mathematical morphological operators (IPSOFMM operators) is proposed. Finally, by combining the fuzzy C-means algorithm and IPSOFMM operators, a novel image edge extraction algorithm (FCM-IPSO algorithm) is proposed and implemented. Compared to existing algorithms, the FCM-IPSO algorithm exhibits more image edges and a 73.81% decrease in the noise introduction rate. The outstanding performance of (I, PSO)-fuzzy rough sets in image edge extraction demonstrates their practical application value.
基金funded by King Saud University,Research Supporting Project Number(RSP2024R167),Riyadh,Saudi Arabia.
文摘This research is devoted to diagnosing water-borne infectious diseases caused by floods employing a novel diagnosis approach,the Einstein hybrid structure of q-rung orthopair fuzzy soft set.This approach integrates parts of fuzzy logic and soft set theory to develop a robust alternative for disease detection in stressful situations,especially in areas affected by floods.Compared to the traditional intuitionistic fuzzy soft set and Pythagorean fuzzy soft set,the q-rung orthopair fuzzy soft set(q-ROFSS)adequately incorporates unclear and indeterminate facts.The major objective of this investigation is to formulate the q-rung orthopair fuzzy soft Einstein hybrid weighted average(q-ROFSEHWA)operator and its specific characteristics.Moreover,our stated operator is implementing intelligentmulti-criteria group decision-making(MCGDM)methodology.Floods are severe natural catastrophes that raise the risk of diseases and epidemics,particularly those caused by contaminants in the water,such as gastrointestinal diseases,respiratory infections,vector-borne diseases,skin infections,and water-borne parasites.The designed MCGDM strategy tackles the prevalence of certain conditions in flood-affected patients.A comparative investigation determined that the suggested method for detecting water-borne infectious disease due to floods is more effective and productive than conventional methods because of its logical structure.
文摘In this paper,a decision-making problem with a q-rung orthopair fuzzy hypersoft environment is developed,and two operators of ordered weighted average and induced ordered weighted average are developed.Several fundamental features are also derived.The induced ordered weighted average operator is essential in a q-ROFH environment as the induced ordered aggregation operators are special cases of the existing aggregation operators that already exist in q-ROFH environments.The main function of these operators is to help decision-makers gain a complete understanding of uncertain facts.The proposed aggregation operator is applied to a decision-making problem,with the aim of selecting the most promising real estate project for investment.
文摘The two universes multi-granularity fuzzy rough set model is an effective tool for handling uncertainty problems between two domains with the help of binary fuzzy relations. This article applies the idea of neighborhood rough sets to two universes multi-granularity fuzzy rough sets, and discusses the two-universes multi-granularity neighborhood fuzzy rough set model. Firstly, the upper and lower approximation operators are defined in the two universes multi-granularity neighborhood fuzzy rough set model. Secondly, the properties of the upper and lower approximation operators are discussed. Finally, the properties of the two universes multi-granularity neighborhood fuzzy rough set model are verified through case studies.
基金supported by Shanghai Pujiang Program (No.2019PJC062)the Natural Science Foundation of Shandong Province (No.ZR2021MG003)the Research Project on Undergraduate Teaching Reform of Higher Education in Shandong Province (No.Z2021046).
文摘The purpose of this study is to reduce the uncertainty in the calculation process on hesitant fuzzy sets(HFSs).The innovation of this study is to unify the cardinal numbers of hesitant fuzzy elements(HFEs)in a special way.Firstly,a probability density function is assigned for any given HFE.Thereafter,equal-probability transformation is introduced to transform HFEs with different cardinal numbers on the condition into the same probability density function.The characteristic of this transformation is that the higher the consistency of the membership degrees in HFEs,the higher the credibility of the mentioned membership degrees is,then,the bigger the probability density values for them are.According to this transformation technique,a set of novel distance measures on HFSs is provided.Finally,an illustrative example of intersection traffic control is introduced to show the usefulness of the given distance measures.The example also shows that this study is a good complement to operation theories on HFSs.
基金supported by the National Natural Science Foundation in China(Yue Qi,Project No.71861015).
文摘In previous research on two-sided matching(TSM)decision,agents’preferences were often given in the form of exact values of ordinal numbers and linguistic phrase term sets.Nowdays,the matching agent cannot perform the exact evaluation in the TSM situations due to the great fuzziness of human thought and the complexity of reality.Probability hesitant fuzzy sets,however,have grown in popularity due to their advantages in communicating complex information.Therefore,this paper develops a TSM decision-making approach with multi-attribute probability hesitant fuzzy sets and unknown attribute weight information.The agent attribute weight vector should be obtained by using the maximum deviation method and Hamming distance.The probabilistic hesitancy fuzzy information matrix of each agent is then arranged to determine the comprehensive evaluation of two matching agent sets.The agent satisfaction degree is calculated using the technique for order preference by similarity to ideal solution(TOPSIS).Additionally,the multi-object programming technique is used to establish a TSM method with the objective of maximizing the agent satisfaction of two-sided agents,and the matching schemes are then established by solving the built model.The study concludes by providing a real-world supply-demand scenario to illustrate the effectiveness of the proposed method.The proposed method is more flexible than prior research since it expresses evaluation information using probability hesitating fuzzy sets and can be used in scenarios when attribute weight information is unclear.
文摘Nowadays, picture fuzzy set theory is a flourishing field in mathematics with uncertainty by incorporating the concept of positive, negative and neutral membership degrees of an object. A traditional crisp relation represents the satisfaction or the dissatisfaction of relationship, connection or correspondence between the objects of two or more sets. However, there are some problems that can’t be solved through classical relationships, such as the relationship between two objects being vague. In those situations, picture fuzzy relation over picture fuzzy sets is an important and powerful concept which is suitable for describing correspondences between two vague objects. It represents the strength of association of the elements of picture fuzzy sets. It plays an important role in picture fuzzy modeling, inference and control system and also has important applications in relational databases, approximate reasoning, preference modeling, medical diagnosis, etc. In this article, we define picture fuzzy relations over picture fuzzy sets, including some other fundamental definitions with illustrations. The max-min and min-max compositions of picture fuzzy relations are defined in the light of picture fuzzy sets and discussed some properties related to them. The reflexivity, symmetry and transitivity of a picture fuzzy relation are described over a picture fuzzy set. Finally, various properties are explored related to the picture fuzzy relations over a picture fuzzy set.
文摘Up to now, the study on the cardinal number of fuzzy sets has advanced at on pace since it is very hard to give it an appropriate definition. Althrough for it in [1], it is with some harsh terms and is not reasonable as we point out in this paper. In the paper, we give a general definition of fuzzy cardinal numbers. Based on this definition, we not only obtain a large part of results with re spect to cardinal numbers, but also give a few of new properties of fuzzy cardinal numbers.
文摘A method with the fuzzy entropy for measuring fuzziness to fuzzy problem in rough sets is proposed. A new sort of the fuzzy entropy is given. The calculating formula and the equivalent expression method with the fuzzy entropy in rough sets based on equivalence relation are provided, and the properties of the fuzzy entropy are proved. The fuzzy entropy based on equivalent relation is extended to generalize the fuzzy entropy based on general binary relation, and the calculating formula and the equivalent expression of the generalized fuzzy entropy are also given. Finally, an example illustrates the way for getting the fuzzy entropy. Results show that the fuzzy entropy can conveniently measure the fuzziness in rough sets.
基金The National Natural Science Foundation of China (No70571087)the National Science Fund for Distinguished Young Scholarsof China (No70625005)
文摘The concept of the degree of similarity between interval-valued intuitionistic fuzzy sets (IVIFSs) is introduced, and some distance measures between IVIFSs are defined based on the Hamming distance, the normalized Hamming distance, the weighted Hamming distance, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance, etc. Then, by combining the Hausdorff metric with the Hamming distance, the Euclidean distance and their weighted versions, two other similarity measures between IVIFSs, i. e., the weighted Hamming distance based on the Hausdorff metric and the weighted Euclidean distance based on the Hausdorff metric, are defined, and then some of their properties are studied. Finally, based on these distance measures, some similarity measures between IVIFSs are defined, and the similarity measures are applied to pattern recognitions with interval-valued intuitionistic fuzzy information.
基金Program for New Century Excellent Talents in Uni-versity (NoNCET-05-0288)
文摘To enable the representation and reasoning for fuzzy ontologies with expressive fuzzy knowledge on the semantic web, a new fuzzy extension of description logics called vague ALC which is based on vague sets is presented. The definition of vague set is introduced and then the syntax and semantics of vague ALC are formally defined. The forms of axioms and assertions in the vague ALC knowledge bases are specified. Finally, the tableau algorithm is developed for the reasoning in the vague ALC. The vague ALC based on vague set uses two degrees of membership instead of a single membership degree in the fuzzy sets and is more accurate in representing the imprecision in the degrees of membership. The vague ALC has more expressive power than ALC and can represent fuzzy knowledge and perform reasoning tasks based on them. Therefore, the vague ALC can enable the representation and reasoning for fuzzy ontologies with expressive fuzzy knowledge on the semantic web.
基金supported by the National Key Research and Development Program of China(2018YFB1201500)
文摘This paper uses Gaussian interval type-2 fuzzy se theory on historical traffic volume data processing to obtain a 24-hour prediction of traffic volume with high precision. A K-means clustering method is used in this paper to get 5 minutes traffic volume variation as input data for the Gaussian interval type-2 fuzzy sets which can reflect the distribution of historical traffic volume in one statistical period. Moreover, the cluster with the largest collection of data obtained by K-means clustering method is calculated to get the key parameters of type-2 fuzzy sets, mean and standard deviation of the Gaussian membership function.Using the range of data as the input of Gaussian interval type-2 fuzzy sets leads to the range of traffic volume forecasting output with the ability of describing the possible range of the traffic volume as well as the traffic volume prediction data with high accuracy. The simulation results show that the average relative error is reduced to 8% based on the combined K-means Gaussian interval type-2 fuzzy sets forecasting method. The fluctuation range in terms of an upper and a lower forecasting traffic volume completely envelopes the actual traffic volume and reproduces the fluctuation range of traffic flow.
基金supported by the National Natural Science Foundation of China (70871117 70571086)the Development Foundation of Dalian Naval Academy
文摘The function of the air target threat evaluation (TE) is the foundation for weapons allocation and senor resources management within the surface air defense. The multi-attribute evaluation methodology is utilized to address the issue of the TE in which the tactic features of the detected target are treated as evaluation attributes. Meanwhile, the intuitionistic fuzzy set (IFS) is employed to deal with information uncertainty in the TE process. Furthermore, on the basis of the entropy weight and inclusion-comparison probability, a hybrid TE method is developed. In order to accommodate the demands of naturalistic decision making, the proposed method allows air defense commanders to express their intuitive opinions besides incorporating into the threat features of the detected target. An illustrative example is provided to indicate the feasibility and advantage of the proposed method.
文摘Similarity measure is an essential tool to compare and determine the degree of similarity between intuitionistic fuzzy sets (IFSs). In this paper, a new similarity measure between intuitionistic fuzzy sets based on the mid points of transformed triangular fuzzy numbers is proposed. The proposed similarity measure provides reasonable results not only for the sets available in the literature but also gives very reasonable results, especially for fuzzy sets as well as for most intuitionistic fuzzy sets. To provide supportive evidence, the proposed similarity measure is tested on certain sets available in literature and is also applied to pattern recognition and medical diagnosis problems. It is observed that the proposed similarity measure provides a very intuitive quantification.
基金supported by National Natural Science Foundation of China(61074093,61473048,61233008)the Open Research Project from SKLMCCS(20150101)Youth Talent Support Plan of Changsha University of Science and Technology
基金Under the auspices of Key Program of National Key Technology R & D Program of China (No. 2007BAB28B01)
文摘Drought is one of the major natural disasters causing huge agricultural losses annually. Regional agricultural drought risk assessment has great significance for reducing regional disaster and agricultural drought losses. Based on the fuzzy characteristics of agricultural drought risk, variable fuzzy sets model was used for comprehensively assessing agricultural drought risk of Liaoning Province in China. A multi-layers and multi-indices assessment model was estab-lished according to variable fuzzy sets theory, and agricultural drought risk of all 14 prefecture-level cities was respec-tively estimated in terms of dangerousness, vulnerability, exposure and drought-resistibility. By calculating the combi-nation weights of four drought risk factors, agricultural drought risk grade of each city was obtained. Based on the as-sessment results, the spatial distribution maps of agricultural drought risk were drawn. The results shows that eastern cities have lower drought dangerousness than western cities in Liaoning Province totally. Most cities are located in low drought vulnerability region and high drought exposure region. Because of frequent and severe drought since 2000, most cities are located in lower drought-resistibility region. Comprehensive agricultural drought risk presents apparent spatial characteristics, escalating from the east to the west. Drought dangerousness is the most important factor influencing comprehensive agricultural drought risk. Through the spatial distribution maps of drought risk, decision makers could find out drought situation and make decisions on drought resistance conveniently.
基金supported by the National Natural Science Foundation of China(60774100)the Natural Science Foundation of Shandong Province of China(Y2007A15)
文摘The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy implications by means of a type of impli- cations and a parameter on the unit interval, then uses them to establish fully implicational reasoning methods for interval-valued fuzzy modus ponens (IFMP) and interval-valued fuzzy modus tel- lens (IFMT) problems. At the same time the reversibility properties of these methods are analyzed and the reversible conditions are given. It is shown that the existing unified forms of α-triple I (the abbreviation of triple implications) methods for FMP and FMT can be seen as the particular cases of our methods for IFMP and IFMT.