期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Fake News Classification Using a Fuzzy Convolutional Recurrent Neural Network 被引量:2
1
作者 Dheeraj Kumar Dixit Amit Bhagat Dharmendra Dangi 《Computers, Materials & Continua》 SCIE EI 2022年第6期5733-5750,共18页
In recent years,social media platforms have gained immense popularity.As a result,there has been a tremendous increase in content on social media platforms.This content can be related to an individual’s sentiments,th... In recent years,social media platforms have gained immense popularity.As a result,there has been a tremendous increase in content on social media platforms.This content can be related to an individual’s sentiments,thoughts,stories,advertisements,and news,among many other content types.With the recent increase in online content,the importance of identifying fake and real news has increased.Although,there is a lot of work present to detect fake news,a study on Fuzzy CRNN was not explored into this direction.In this work,a system is designed to classify fake and real news using fuzzy logic.The initial feature extraction process is done using a convolutional recurrent neural network(CRNN).After the extraction of features,word indexing is done with high dimensionality.Then,based on the indexing measures,the ranking process identifies whether news is fake or real.The fuzzy CRNN model is trained to yield outstanding resultswith 99.99±0.01%accuracy.This work utilizes three different datasets(LIAR,LIAR-PLUS,and ISOT)to find the most accurate model. 展开更多
关键词 Fake news detection text classification convolution recurrent neural network fuzzy convolutional recurrent neural networks
下载PDF
The Fuzzy Neural Network Control Scheme With H∞ Tracking Characteristic of Space Robot System With Dual-arm After Capturing a Spin Spacecraft 被引量:1
2
作者 Jing Cheng Li Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第5期1417-1424,共8页
In this paper,the dynamic evolution for a dualarm space robot capturing a spacecraft is studied,the impact effect and the coordinated stabilization control problem for postimpact closed chain system are discussed.At f... In this paper,the dynamic evolution for a dualarm space robot capturing a spacecraft is studied,the impact effect and the coordinated stabilization control problem for postimpact closed chain system are discussed.At first,the pre-impact dynamic equations of open chain dual-arm space robot are established by Lagrangian approach,and the dynamic equations of a spacecraft are obtained by Newton-Euler method.Based on the results,with the process of integral and simplify,the response of the dual-arm space robot impacted by the spacecraft is analyzed by momentum conservation law and force transfer law.The closed chain system is formed in the post-impact phase.Closed chain constraint equations are obtained by the constraints of closed-loop geometry and kinematics.With the closed chain constraint equations,the composite system dynamic equations are derived.Secondly,the recurrent fuzzy neural network control scheme is designed for calm motion of unstable closed chain system with uncertain system parameter.In order to overcome the effects of uncertain system inertial parameters,the recurrent fuzzy neural network is used to approximate the unknown part,the control method with H∞tracking characteristic.According to the Lyapunov theory,the global stability is demonstrated.Meanwhile,the weighted minimum-norm theory is introduced to distribute torques guarantee that cooperative operation between manipulators.At last,numerical examples simulate the response of the collision,and the efficiency of the control scheme is verified by the simulation results. 展开更多
关键词 Capturing operation calm motion control closed chain system dual-arm space robot recurrent fuzzy neural network H∞tracking characteristic
下载PDF
Achieving of Fuzzy Automata for Processing Fuzzy Logic
3
作者 舒兰 吴青娥 《Journal of Electronic Science and Technology of China》 2005年第4期364-368,共5页
At present, there has been an increasing interest in neuron-fuzzy systems, the combinations of artificial neural networks with fuzzy logic. In this paper, a definition of fuzzy finite state automata (FFA) is introdu... At present, there has been an increasing interest in neuron-fuzzy systems, the combinations of artificial neural networks with fuzzy logic. In this paper, a definition of fuzzy finite state automata (FFA) is introduced and fuzzy knowledge equivalence representations between neural networks, fuzzy systems and models of automata are discussed. Once the network has been trained, we develop a method to extract a representation of the FFA encoded in the recurrent neural network that recognizes the training rules. 展开更多
关键词 fuzzy recurrent neural network fuzzy finite state automata (FFA) fuzzy systems knowledge representation.
下载PDF
Wastewater treatment control method based on a rule adaptive recurrent fuzzy neural network 被引量:4
4
作者 Junfei Qiao Gaitang Han +1 位作者 Honggui Han Wei Chai 《International Journal of Intelligent Computing and Cybernetics》 EI 2017年第2期94-110,共17页
Purpose-The purpose of this paper is to present an on-line modeling and controlling scheme based on the dynamic recurrent neural network for wastewater treatment system.Design/methodology/approach-A control strategy b... Purpose-The purpose of this paper is to present an on-line modeling and controlling scheme based on the dynamic recurrent neural network for wastewater treatment system.Design/methodology/approach-A control strategy based on rule adaptive recurrent neural network(RARFNN)is proposed in this paper to control the dissolved oxygen(DO)concentration and nitrate nitrogen(SNo)concentration.The structure of the RARFNN is self-organized by a rule adaptive algorithm,and the rule adaptive algorithm considers the overall information processing ability of neural network.Furthermore,a stability analysis method is given to prove the convergence of the proposed RARFNN.Findings-By application in the control problem of wastewater treatment process(WWTP),results show that the proposed control method achieves better performance compared to other methods.Originality/value-The proposed on-line modeling and controlling method uses the RARFNN to model and control the dynamic WWTP.The RARFNN can adjust its structure and parameters according to the changes of biochemical reactions and pollutant concentrations.And,the rule adaptive mechanism considers the overall information processing ability judgment of the neural network,which can ensure that the neural network contains the information of the biochemical reactions. 展开更多
关键词 Information processing ability recurrent fuzzy neural network Rule adaptive Wastewater treatment
原文传递
Compensation for secondary uncertainty in electro-hydraulic servo system by gain adaptive sliding mode variable structure control 被引量:11
5
作者 张友旺 桂卫华 《Journal of Central South University of Technology》 EI 2008年第2期256-263,共8页
Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employe... Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employed to identify the primary uncertainty and the mathematic model of the system was turned into an equivalent linear model with terms of secondary uncertainty.At the same time,gain adaptive sliding mode variable structure control(GASMVSC) was employed to synthesize the control effort.The results show that the unrealization problem caused by some system's immeasurable state variables in traditional fuzzy neural networks(TFNN) taking all state variables as its inputs is overcome.On the other hand,the identification by the ADRFNNs online with high accuracy and the adaptive function of the correction term's gain in the GASMVSC make the system possess strong robustness and improved steady accuracy,and the chattering phenomenon of the control effort is also suppressed effectively. 展开更多
关键词 electro-hydraulic servo system adaptive dynamic recurrent fuzzy neural network(ADRFNN) gain adaptive slidingmode variable structure control(GASMVSC) secondary uncertainty
下载PDF
Adaptive inverse control of air supply flow for proton exchange membrane fuel cell systems 被引量:2
6
作者 李春华 朱新坚 +2 位作者 隋升 胡万起 胡鸣若 《Journal of Shanghai University(English Edition)》 CAS 2009年第6期474-480,共7页
To prevent the oxygen starvation and improve the system output performance, an adaptive inverse control (AIC) strategy is developed to regulate the air supply flow of a proton exchange membrane fuel cell (PEMFC) s... To prevent the oxygen starvation and improve the system output performance, an adaptive inverse control (AIC) strategy is developed to regulate the air supply flow of a proton exchange membrane fuel cell (PEMFC) system in this paper. The PEMFC stack and the air supply system including a compressor and a supply manifold are modeled for the purpose of performance analysis and controller design. A recurrent fuzzy neural network (RFNN) is utilized to identify the inverse model of the controlled system and generates a suitable control input during the abrupt step change of external disturbances. Compared with the PI controller, numerical simulations are performed to validate the effectiveness and advantages of the proposed AIC strategy. 展开更多
关键词 proton exchange membrane fuel cell (PEMFC) air supply system COMPRESSOR adaptive inverse control (AIC) recurrent fuzzy neural network (RFNN)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部