In the era of big data,traditional regression models cannot deal with uncertain big data efficiently and accurately.In order to make up for this deficiency,this paper proposes a quantum fuzzy regression model,which us...In the era of big data,traditional regression models cannot deal with uncertain big data efficiently and accurately.In order to make up for this deficiency,this paper proposes a quantum fuzzy regression model,which uses fuzzy theory to describe the uncertainty in big data sets and uses quantum computing to exponentially improve the efficiency of data set preprocessing and parameter estimation.In this paper,data envelopment analysis(DEA)is used to calculate the degree of importance of each data point.Meanwhile,Harrow,Hassidim and Lloyd(HHL)algorithm and quantum swap circuits are used to improve the efficiency of high-dimensional data matrix calculation.The application of the quantum fuzzy regression model to smallscale financial data proves that its accuracy is greatly improved compared with the quantum regression model.Moreover,due to the introduction of quantum computing,the speed of dealing with high-dimensional data matrix has an exponential improvement compared with the fuzzy regression model.The quantum fuzzy regression model proposed in this paper combines the advantages of fuzzy theory and quantum computing which can efficiently calculate high-dimensional data matrix and complete parameter estimation using quantum computing while retaining the uncertainty in big data.Thus,it is a new model for efficient and accurate big data processing in uncertain environments.展开更多
Recently, there has been a rapid development in computer technology, which has in turn led to develop the fully robotic welding system using artificial intelligence (AI) technology. However, the robotic welding syst...Recently, there has been a rapid development in computer technology, which has in turn led to develop the fully robotic welding system using artificial intelligence (AI) technology. However, the robotic welding system has not been achieved due to difficulties of the mathematical model and sensor technologies. The possibilities of the fuzzy regression method to predict the bead geometry, such as bead width, bead height, bead penetration and bead area in the robotic GMA (gas metal arc) welding process is presented. The approach, a well-known method to deal with the problems with a high degree of fuzziness, is used to build the relationship between four process variables and the four quality characteristics, respectively. Using these models, the proper prediction of the process variables for obtaining the optimal bead geometry can be determined.展开更多
Expressions were given to describe the closeness between the estimated value and observed value for two asymmetric exponential fuzzy numbers. Based on that, the model was given to solve the question of fuzzy multivari...Expressions were given to describe the closeness between the estimated value and observed value for two asymmetric exponential fuzzy numbers. Based on that, the model was given to solve the question of fuzzy multivariable regression with fuzzy input, fuzzy output and crisp coefficients. Finally, with this model, the prediction of field mouse occurrence rate had been done and the satisfied result was obtained.展开更多
Despite the fact that fuzzy regression discontinuity designs are growing in popularity, a lot of research takes into account treatment non-compliance difficulties, specifically the fuzziness of the treatment impact. T...Despite the fact that fuzzy regression discontinuity designs are growing in popularity, a lot of research takes into account treatment non-compliance difficulties, specifically the fuzziness of the treatment impact. This paper took into account independent and dependent fuzzy factors when creating these designs. Additionally we took into account treatment non-compliance difficulties, specifically the fuzziness of the treatment impact, as other research does. The modified Fuzzy Regression Discontinuity model is preferable for modeling fuzzy data. It enables us to draw improved causal effects accommodating fuzzy variables, not just the fuzziness of the treatment effect as in Fuzzy Regression Discontinuity models. A fuzzy dataset is converted into crisp data by the Centroid method of defuzzification. Once the data is crisp, the traditional least squares methods of approximation are used to estimate the parameters in the model since these parameters are considered crisp whilst the error terms are fuzzy. The Alcohol Use Disorders Identification Test score(AUDIT score) can be used as a cutoff to initiate treatment in this case and can be used to predict the progression of HIV disease and/or AIDS. Counseling helps to lower the use of alcohol in people living with HIV/AIDS (PLWHA) as a result, improving the participants’ CD4 counts.展开更多
A Mobile Ad-hoc NETwork(MANET)contains numerous mobile nodes,and it forms a structure-less network associated with wireless links.But,the node movement is the key feature of MANETs;hence,the quick action of the nodes ...A Mobile Ad-hoc NETwork(MANET)contains numerous mobile nodes,and it forms a structure-less network associated with wireless links.But,the node movement is the key feature of MANETs;hence,the quick action of the nodes guides a link failure.This link failure creates more data packet drops that can cause a long time delay.As a result,measuring accurate link failure time is the key factor in the MANET.This paper presents a Fuzzy Linear Regression Method to measure Link Failure(FLRLF)and provide an optimal route in the MANET-Internet of Things(IoT).This work aims to predict link failure and improve routing efficiency in MANET.The Fuzzy Linear Regression Method(FLRM)measures the long lifespan link based on the link failure.The mobile node group is built by the Received Signal Strength(RSS).The Hill Climbing(HC)method selects the Group Leader(GL)based on node mobility,node degree and node energy.Additionally,it uses a Data Gathering node forward the infor-mation from GL to the sink node through multiple GL.The GL is identified by linking lifespan and energy using the Particle Swarm Optimization(PSO)algo-rithm.The simulation results demonstrate that the FLRLF approach increases the GL lifespan and minimizes the link failure time in the MANET.展开更多
A least squares support vector fuzzy regression model (LS-SVFR) is proposed to estimate uncertain and imprecise data by applying the fuzzy set principle to weight vectors. This model only requires a set of linear eq...A least squares support vector fuzzy regression model (LS-SVFR) is proposed to estimate uncertain and imprecise data by applying the fuzzy set principle to weight vectors. This model only requires a set of linear equations to obtain the weight vector and the bias term, which is different from the solution of a complicated quadratic programming problem in existing support vector fuzzy regression models. Besides, the proposed LS-SVFR is a model-free method in which the underlying model function doesn't need to be predefined. Numerical examples and fault detection application are applied to demonstrate the effectiveness and applicability of the proposed model.展开更多
Rock mass rating system (RMR) is based on the six parameters which was defined by Bieniawski (1989) [1]. Experts frequently relate joint and discontinuities and ground water conditions in linguistic terms with rou...Rock mass rating system (RMR) is based on the six parameters which was defined by Bieniawski (1989) [1]. Experts frequently relate joint and discontinuities and ground water conditions in linguistic terms with rough calculation. As a result, there is a sharp transition between two modules which create doubts. So, in this paper the proposed weights technique was applied for linguistic criteria. Then by using the fuzzy inference system and the multi-variable regression analysis, the accurate RMR is predicted. Before the performing of regression analysis, sensitivity analysis was applied for each of Bieniawski parameters. In this process, the best function was selected among linear, logarithmic, exponential and inverse func- tions and finally it was applied in the regression analysis for construction of a predictive equation. From the constructed regression equation the relative importance of the input parameters can also be observed. It should be noted that joint condition was identified as the most important effective parameter upon RMR. Finally, fuzzy and regression models were validated with the test datasets and it was found that the fuzzy model predicts more accurately RMR than reression models.展开更多
This paper transforms fuzzy number into clear number using the centroid method, thus we can research the traditional linear regression model which is transformed from the fuzzy linear regression model. The model’s in...This paper transforms fuzzy number into clear number using the centroid method, thus we can research the traditional linear regression model which is transformed from the fuzzy linear regression model. The model’s input and output are fuzzy numbers, and the regression coefficients are clear numbers. This paper considers the parameter estimation and impact analysis based on data deletion. Through the study of example and comparison with other models, it can be concluded that the model in this paper is applied easily and better.展开更多
In order to reduce the influence of outliers on the parameter estimate of the attenuation formula for the blasting vibration velocity,a fuzzy nonlinear regression method of Sadov’s vibration formula was proposed on t...In order to reduce the influence of outliers on the parameter estimate of the attenuation formula for the blasting vibration velocity,a fuzzy nonlinear regression method of Sadov’s vibration formula was proposed on the basis of the fuzziness of blasting engineering,and the algorithm was described in details as well.In accordance with an engineering case,the vibration attenuation formula was regressed by the fuzzy nonlinear regression method and the nonlinear least square method,respectively.The calculation results showed that the fuzzy nonlinear regression method is more suitable to the field test data.It differs from the nonlinear least square method because the weight of residual square in the objective function can be adjusted according to the membership of each data.And the deviation calculation of least square estimate of parameters in the nonlinear regression model verified the rationality of using the membership to assign the weight of residual square.The fuzzy nonlinear regression method provides a calculation basis for estimating Sadov’s vibration formula’s parameters more accurately.展开更多
Rice production is crucial for food security in China,and its relationship with rural labor migration has been studied extensively.Labor migration in rural China has taken new forms in recent years.There has been a di...Rice production is crucial for food security in China,and its relationship with rural labor migration has been studied extensively.Labor migration in rural China has taken new forms in recent years.There has been a discernible trend wherein adult children have started migrating to cities while their elderly parents return to villages to re-engage in on-farm work.The phenomenon has notably shaped the intergenerational division of labor(IDL)within households.However,it remains to be seen how farmers adjust their rice production systems in response to the IDL.The age of 60 years for employment injury insurance is the eligibility threshold for off-farm employment and is used to obtain a source of exogenous variation in the IDL.Based on a representative household survey of 1,752 rice farmers in the Hubei Province of Central China,our fuzzy regression discontinuity analysis reveals that farmers in IDL households are more likely to adopt ratoon rice(RR)than single cropping rice(SR)or double cropping rice(DR).The effect of the IDL varies under different levels of operational scales and specialized agricultural service availability.Further analysis suggests that farmers’arrangements are associated with two potential mechanisms of downward intergenerational transfer.Monetary transfer for urban housing purchases increases RR in IDL households,and time transfer for intergenerational childcare significantly promotes SR in IDL households.This study enhances the understanding of the relationship between rural labor migration and rice production in China,providing a reference for adjusting rice production systems to ensure food security.展开更多
Deformation modulus is the important parameter in stability analysis of tunnels, dams and mining struc- tures. In this paper, two predictive models including Mamdani fuzzy system (MFS) and multivariable regression a...Deformation modulus is the important parameter in stability analysis of tunnels, dams and mining struc- tures. In this paper, two predictive models including Mamdani fuzzy system (MFS) and multivariable regression analysis (MVRA) were developed to predict deformation modulus based on data obtained from dilatometer tests carried out in Bakhtiary dam site and additional data collected from longwall coal mines. Models inputs were considered to be rock quality designation, overburden height, weathering, unconfined compressive strength, bedding inclination to core axis, joint roughness coefficient and fill thickness. To control the models performance, calculating indices such as root mean square error (RMSE), variance account for (VAF) and determination coefficient (R^2) were used. The MFS results show the significant prediction accuracy along with high performance compared to MVRA results. Finally, the sensitivity analysis of MFS results shows that the most and the least effective parameters on deformation modulus are weatherin~ and overburden height, respectively.展开更多
A new multiple models(MM) approach was proposed to model complex industrial process by using Fuzzy Support Vector Machines(F -SVMs). By applying the proposed approach to a pH neutralization titration experiment, F -SV...A new multiple models(MM) approach was proposed to model complex industrial process by using Fuzzy Support Vector Machines(F -SVMs). By applying the proposed approach to a pH neutralization titration experiment, F -SVMs MM not only provides satisfactory approximation and generalization property, but also achieves superior performance to USOCPN multiple modeling method and single modeling method based on standard SVMs.展开更多
In order to increase the safety of working environment and decrease the unwanted costs related to overbreak in tunnel excavation projects, it is necessary to minimize overbreak percentage. Thus, based on regression an...In order to increase the safety of working environment and decrease the unwanted costs related to overbreak in tunnel excavation projects, it is necessary to minimize overbreak percentage. Thus, based on regression analysis and fuzzy inference system, this paper tries to develop predictive models to estimate overbreak caused by blasting at the Alborz Tunnel. To develop the models, 202 datasets were utilized, out of which 182 were used for constructing the models. To validate and compare the obtained results,determination coefficient(R2) and root mean square error(RMSE) indexes were chosen. For the fuzzy model, R2 and RMSE are equal to 0.96 and 0.55 respectively, whereas for regression model, they are 0.41 and 1.75 respectively, proving that the fuzzy predictor performs, significantly, better than the statistical method. Using the developed fuzzy model, the percentage of overbreak was minimized in the Alborz Tunnel.展开更多
Based on the data from the China Health and Retirement Longitudinal Study(CHARLS)in 2011 and 2013,this paper studied the impact of retirement on male and female workers’health and its impact mechanism under the manda...Based on the data from the China Health and Retirement Longitudinal Study(CHARLS)in 2011 and 2013,this paper studied the impact of retirement on male and female workers’health and its impact mechanism under the mandatory retirement age system in China by using Fuzzy Regression Discontinuity Design(FRDD).The results indicated that retirement increased the probability of men assessing themselves as"healthy"by 25 percentage points and lowered the probability of suffering from chronic diseases for women by 26 percentage points.In terms of mechanism analysis,it was found that the remarkable increase in social interactions after retirement was the main reason for the improvement of health for male retirees,but not the reason for the lower probability of having chronic diseases for female retirees.The findings serve as important references for formulating policies regarding postponing retirement age and flexible retirement.展开更多
In this paper,we first give the solution concept of the fuzzy matrix equation =. Secondly,we discuss the property of the solution and give the method of solving the fuzzy matrix equation A=. Finally,we present an appl...In this paper,we first give the solution concept of the fuzzy matrix equation =. Secondly,we discuss the property of the solution and give the method of solving the fuzzy matrix equation A=. Finally,we present an application of solving fuzzy matrix equation A= to the fuzzy linear regression analysis,establish a new model of fuzzy linear regression,and introduce a new method of estimating parameters.展开更多
The article provides results of experiments on research of speed of escalating of vanadium gel on short-circuited probes from various metals, particularly from copper and aluminium it is shown that speed of escalating...The article provides results of experiments on research of speed of escalating of vanadium gel on short-circuited probes from various metals, particularly from copper and aluminium it is shown that speed of escalating of gel on probes is influenced with a material of a probe and configuration of probes in a solution.展开更多
基金This work is supported by the NationalNatural Science Foundation of China(No.62076042)the Key Research and Development Project of Sichuan Province(Nos.2021YFSY0012,2020YFG0307,2021YFG0332)+3 种基金the Science and Technology Innovation Project of Sichuan(No.2020017)the Key Research and Development Project of Chengdu(No.2019-YF05-02028-GX)the Innovation Team of Quantum Security Communication of Sichuan Province(No.17TD0009)the Academic and Technical Leaders Training Funding Support Projects of Sichuan Province(No.2016120080102643).
文摘In the era of big data,traditional regression models cannot deal with uncertain big data efficiently and accurately.In order to make up for this deficiency,this paper proposes a quantum fuzzy regression model,which uses fuzzy theory to describe the uncertainty in big data sets and uses quantum computing to exponentially improve the efficiency of data set preprocessing and parameter estimation.In this paper,data envelopment analysis(DEA)is used to calculate the degree of importance of each data point.Meanwhile,Harrow,Hassidim and Lloyd(HHL)algorithm and quantum swap circuits are used to improve the efficiency of high-dimensional data matrix calculation.The application of the quantum fuzzy regression model to smallscale financial data proves that its accuracy is greatly improved compared with the quantum regression model.Moreover,due to the introduction of quantum computing,the speed of dealing with high-dimensional data matrix has an exponential improvement compared with the fuzzy regression model.The quantum fuzzy regression model proposed in this paper combines the advantages of fuzzy theory and quantum computing which can efficiently calculate high-dimensional data matrix and complete parameter estimation using quantum computing while retaining the uncertainty in big data.Thus,it is a new model for efficient and accurate big data processing in uncertain environments.
文摘Recently, there has been a rapid development in computer technology, which has in turn led to develop the fully robotic welding system using artificial intelligence (AI) technology. However, the robotic welding system has not been achieved due to difficulties of the mathematical model and sensor technologies. The possibilities of the fuzzy regression method to predict the bead geometry, such as bead width, bead height, bead penetration and bead area in the robotic GMA (gas metal arc) welding process is presented. The approach, a well-known method to deal with the problems with a high degree of fuzziness, is used to build the relationship between four process variables and the four quality characteristics, respectively. Using these models, the proper prediction of the process variables for obtaining the optimal bead geometry can be determined.
文摘Expressions were given to describe the closeness between the estimated value and observed value for two asymmetric exponential fuzzy numbers. Based on that, the model was given to solve the question of fuzzy multivariable regression with fuzzy input, fuzzy output and crisp coefficients. Finally, with this model, the prediction of field mouse occurrence rate had been done and the satisfied result was obtained.
文摘Despite the fact that fuzzy regression discontinuity designs are growing in popularity, a lot of research takes into account treatment non-compliance difficulties, specifically the fuzziness of the treatment impact. This paper took into account independent and dependent fuzzy factors when creating these designs. Additionally we took into account treatment non-compliance difficulties, specifically the fuzziness of the treatment impact, as other research does. The modified Fuzzy Regression Discontinuity model is preferable for modeling fuzzy data. It enables us to draw improved causal effects accommodating fuzzy variables, not just the fuzziness of the treatment effect as in Fuzzy Regression Discontinuity models. A fuzzy dataset is converted into crisp data by the Centroid method of defuzzification. Once the data is crisp, the traditional least squares methods of approximation are used to estimate the parameters in the model since these parameters are considered crisp whilst the error terms are fuzzy. The Alcohol Use Disorders Identification Test score(AUDIT score) can be used as a cutoff to initiate treatment in this case and can be used to predict the progression of HIV disease and/or AIDS. Counseling helps to lower the use of alcohol in people living with HIV/AIDS (PLWHA) as a result, improving the participants’ CD4 counts.
文摘A Mobile Ad-hoc NETwork(MANET)contains numerous mobile nodes,and it forms a structure-less network associated with wireless links.But,the node movement is the key feature of MANETs;hence,the quick action of the nodes guides a link failure.This link failure creates more data packet drops that can cause a long time delay.As a result,measuring accurate link failure time is the key factor in the MANET.This paper presents a Fuzzy Linear Regression Method to measure Link Failure(FLRLF)and provide an optimal route in the MANET-Internet of Things(IoT).This work aims to predict link failure and improve routing efficiency in MANET.The Fuzzy Linear Regression Method(FLRM)measures the long lifespan link based on the link failure.The mobile node group is built by the Received Signal Strength(RSS).The Hill Climbing(HC)method selects the Group Leader(GL)based on node mobility,node degree and node energy.Additionally,it uses a Data Gathering node forward the infor-mation from GL to the sink node through multiple GL.The GL is identified by linking lifespan and energy using the Particle Swarm Optimization(PSO)algo-rithm.The simulation results demonstrate that the FLRLF approach increases the GL lifespan and minimizes the link failure time in the MANET.
基金supported by the National High Technology Research and Development Program of China(863 Program)(No.2009AA043001)the Program of the International Science and Technology Cooperation(No.2009DFA12520)+4 种基金the Shanghai Science Committee Science and Technology Attack Plan(No.10511501002)the International Cooperation Projects of Shanghai Science and Technology Programs(No.10160704500)the Ningbo Natural Science Foundation(No.2009A610074)the Zhejiang Excellent Young Teachers in Universities and Colleges Funding Program (No.20101215)the Scientific Research Fund of Zhejiang Provincial Education Department(No.Y201119567)
文摘A least squares support vector fuzzy regression model (LS-SVFR) is proposed to estimate uncertain and imprecise data by applying the fuzzy set principle to weight vectors. This model only requires a set of linear equations to obtain the weight vector and the bias term, which is different from the solution of a complicated quadratic programming problem in existing support vector fuzzy regression models. Besides, the proposed LS-SVFR is a model-free method in which the underlying model function doesn't need to be predefined. Numerical examples and fault detection application are applied to demonstrate the effectiveness and applicability of the proposed model.
文摘Rock mass rating system (RMR) is based on the six parameters which was defined by Bieniawski (1989) [1]. Experts frequently relate joint and discontinuities and ground water conditions in linguistic terms with rough calculation. As a result, there is a sharp transition between two modules which create doubts. So, in this paper the proposed weights technique was applied for linguistic criteria. Then by using the fuzzy inference system and the multi-variable regression analysis, the accurate RMR is predicted. Before the performing of regression analysis, sensitivity analysis was applied for each of Bieniawski parameters. In this process, the best function was selected among linear, logarithmic, exponential and inverse func- tions and finally it was applied in the regression analysis for construction of a predictive equation. From the constructed regression equation the relative importance of the input parameters can also be observed. It should be noted that joint condition was identified as the most important effective parameter upon RMR. Finally, fuzzy and regression models were validated with the test datasets and it was found that the fuzzy model predicts more accurately RMR than reression models.
文摘This paper transforms fuzzy number into clear number using the centroid method, thus we can research the traditional linear regression model which is transformed from the fuzzy linear regression model. The model’s input and output are fuzzy numbers, and the regression coefficients are clear numbers. This paper considers the parameter estimation and impact analysis based on data deletion. Through the study of example and comparison with other models, it can be concluded that the model in this paper is applied easily and better.
基金Supported by the National Natural Science Foundation of China(10272109)。
文摘In order to reduce the influence of outliers on the parameter estimate of the attenuation formula for the blasting vibration velocity,a fuzzy nonlinear regression method of Sadov’s vibration formula was proposed on the basis of the fuzziness of blasting engineering,and the algorithm was described in details as well.In accordance with an engineering case,the vibration attenuation formula was regressed by the fuzzy nonlinear regression method and the nonlinear least square method,respectively.The calculation results showed that the fuzzy nonlinear regression method is more suitable to the field test data.It differs from the nonlinear least square method because the weight of residual square in the objective function can be adjusted according to the membership of each data.And the deviation calculation of least square estimate of parameters in the nonlinear regression model verified the rationality of using the membership to assign the weight of residual square.The fuzzy nonlinear regression method provides a calculation basis for estimating Sadov’s vibration formula’s parameters more accurately.
基金supported by the National Natural Science Foundation of China(42207529)the China Postdoctoral Science Foundation(2022M721289).
文摘Rice production is crucial for food security in China,and its relationship with rural labor migration has been studied extensively.Labor migration in rural China has taken new forms in recent years.There has been a discernible trend wherein adult children have started migrating to cities while their elderly parents return to villages to re-engage in on-farm work.The phenomenon has notably shaped the intergenerational division of labor(IDL)within households.However,it remains to be seen how farmers adjust their rice production systems in response to the IDL.The age of 60 years for employment injury insurance is the eligibility threshold for off-farm employment and is used to obtain a source of exogenous variation in the IDL.Based on a representative household survey of 1,752 rice farmers in the Hubei Province of Central China,our fuzzy regression discontinuity analysis reveals that farmers in IDL households are more likely to adopt ratoon rice(RR)than single cropping rice(SR)or double cropping rice(DR).The effect of the IDL varies under different levels of operational scales and specialized agricultural service availability.Further analysis suggests that farmers’arrangements are associated with two potential mechanisms of downward intergenerational transfer.Monetary transfer for urban housing purchases increases RR in IDL households,and time transfer for intergenerational childcare significantly promotes SR in IDL households.This study enhances the understanding of the relationship between rural labor migration and rice production in China,providing a reference for adjusting rice production systems to ensure food security.
文摘Deformation modulus is the important parameter in stability analysis of tunnels, dams and mining struc- tures. In this paper, two predictive models including Mamdani fuzzy system (MFS) and multivariable regression analysis (MVRA) were developed to predict deformation modulus based on data obtained from dilatometer tests carried out in Bakhtiary dam site and additional data collected from longwall coal mines. Models inputs were considered to be rock quality designation, overburden height, weathering, unconfined compressive strength, bedding inclination to core axis, joint roughness coefficient and fill thickness. To control the models performance, calculating indices such as root mean square error (RMSE), variance account for (VAF) and determination coefficient (R^2) were used. The MFS results show the significant prediction accuracy along with high performance compared to MVRA results. Finally, the sensitivity analysis of MFS results shows that the most and the least effective parameters on deformation modulus are weatherin~ and overburden height, respectively.
基金National High Technology Research andDevelopment Program of China( Project 863 G2 0 0 1AA413 13 0
文摘A new multiple models(MM) approach was proposed to model complex industrial process by using Fuzzy Support Vector Machines(F -SVMs). By applying the proposed approach to a pH neutralization titration experiment, F -SVMs MM not only provides satisfactory approximation and generalization property, but also achieves superior performance to USOCPN multiple modeling method and single modeling method based on standard SVMs.
文摘In order to increase the safety of working environment and decrease the unwanted costs related to overbreak in tunnel excavation projects, it is necessary to minimize overbreak percentage. Thus, based on regression analysis and fuzzy inference system, this paper tries to develop predictive models to estimate overbreak caused by blasting at the Alborz Tunnel. To develop the models, 202 datasets were utilized, out of which 182 were used for constructing the models. To validate and compare the obtained results,determination coefficient(R2) and root mean square error(RMSE) indexes were chosen. For the fuzzy model, R2 and RMSE are equal to 0.96 and 0.55 respectively, whereas for regression model, they are 0.41 and 1.75 respectively, proving that the fuzzy predictor performs, significantly, better than the statistical method. Using the developed fuzzy model, the percentage of overbreak was minimized in the Alborz Tunnel.
基金supporter by “Economic Effect of Postponing Retirement Age and Research on a Fair,Sustainable Pension Insurance System”(15BJY182)funded by the National Social Science Fund of China(NSSFC)
文摘Based on the data from the China Health and Retirement Longitudinal Study(CHARLS)in 2011 and 2013,this paper studied the impact of retirement on male and female workers’health and its impact mechanism under the mandatory retirement age system in China by using Fuzzy Regression Discontinuity Design(FRDD).The results indicated that retirement increased the probability of men assessing themselves as"healthy"by 25 percentage points and lowered the probability of suffering from chronic diseases for women by 26 percentage points.In terms of mechanism analysis,it was found that the remarkable increase in social interactions after retirement was the main reason for the improvement of health for male retirees,but not the reason for the lower probability of having chronic diseases for female retirees.The findings serve as important references for formulating policies regarding postponing retirement age and flexible retirement.
文摘In this paper,we first give the solution concept of the fuzzy matrix equation =. Secondly,we discuss the property of the solution and give the method of solving the fuzzy matrix equation A=. Finally,we present an application of solving fuzzy matrix equation A= to the fuzzy linear regression analysis,establish a new model of fuzzy linear regression,and introduce a new method of estimating parameters.
文摘The article provides results of experiments on research of speed of escalating of vanadium gel on short-circuited probes from various metals, particularly from copper and aluminium it is shown that speed of escalating of gel on probes is influenced with a material of a probe and configuration of probes in a solution.