Though the dominance-based rough set approach has been applied to interval-valued information systems for knowledge discovery, the traditional dominance relation cannot be used to describe the degree of dominance prin...Though the dominance-based rough set approach has been applied to interval-valued information systems for knowledge discovery, the traditional dominance relation cannot be used to describe the degree of dominance principle in terms of pairs of objects. In this paper, a ranking method of interval-valued data is used to describe the degree of dominance in the interval-valued information system. Therefore, the fuzzy rough technique is employed to construct the rough approximations of upward and downward unions of decision classes, from which one can induce at least and at most decision rules with certainty factors from the interval-valued decision system. Some numerical examples are employed to substantiate the conceptual arguments.展开更多
Rough set theory is an important tool to solve uncertain problems. Attribute reduction, as one of the core issues of rough set theory, has been proven to be an effective method for knowledge acquisition. Most of heuri...Rough set theory is an important tool to solve uncertain problems. Attribute reduction, as one of the core issues of rough set theory, has been proven to be an effective method for knowledge acquisition. Most of heuristic attribute reduction algorithms usually keep the positive region of a target set unchanged and ignore boundary region information. So, how to acquire knowledge from the boundary region of a target set in a multi-granulation space is an interesting issue. In this paper, a new concept, fuzziness of an approximation set of rough set is put forward firstly. Then the change rules of fuzziness in changing granularity spaces are analyzed. Finally, a new algorithm for attribute reduction based on the fuzziness of 0.5-approximation set is presented. Several experimental results show that the attribute reduction by the proposed method has relative better classification characteristics compared with various classification algorithms.展开更多
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 60632050) and Postdoctoral Science Foundation of China (20100481149).
文摘Though the dominance-based rough set approach has been applied to interval-valued information systems for knowledge discovery, the traditional dominance relation cannot be used to describe the degree of dominance principle in terms of pairs of objects. In this paper, a ranking method of interval-valued data is used to describe the degree of dominance in the interval-valued information system. Therefore, the fuzzy rough technique is employed to construct the rough approximations of upward and downward unions of decision classes, from which one can induce at least and at most decision rules with certainty factors from the interval-valued decision system. Some numerical examples are employed to substantiate the conceptual arguments.
基金supported by the National Natural Science Foundation of China (61472056, 61309014)
文摘Rough set theory is an important tool to solve uncertain problems. Attribute reduction, as one of the core issues of rough set theory, has been proven to be an effective method for knowledge acquisition. Most of heuristic attribute reduction algorithms usually keep the positive region of a target set unchanged and ignore boundary region information. So, how to acquire knowledge from the boundary region of a target set in a multi-granulation space is an interesting issue. In this paper, a new concept, fuzziness of an approximation set of rough set is put forward firstly. Then the change rules of fuzziness in changing granularity spaces are analyzed. Finally, a new algorithm for attribute reduction based on the fuzziness of 0.5-approximation set is presented. Several experimental results show that the attribute reduction by the proposed method has relative better classification characteristics compared with various classification algorithms.