Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship ...Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship between data attributes.However,the creation of fuzzy rules typically depends on expert knowledge,which may not fully leverage the label information in training data and may be subjective.To address this issue,a novel fuzzy rule oversampling approach is developed based on the learning vector quantization(LVQ)algorithm.In this method,the label information of the training data is utilized to determine the antecedent part of If-Then fuzzy rules by dynamically dividing attribute intervals using LVQ.Subsequently,fuzzy rules are generated and adjusted to calculate rule weights.The number of new samples to be synthesized for each rule is then computed,and samples from the minority class are synthesized based on the newly generated fuzzy rules.This results in the establishment of a fuzzy rule oversampling method based on LVQ.To evaluate the effectiveness of this method,comparative experiments are conducted on 12 publicly available imbalance datasets with five other sampling techniques in combination with the support function machine.The experimental results demonstrate that the proposed method can significantly enhance the classification algorithm across seven performance indicators,including a boost of 2.15%to 12.34%in Accuracy,6.11%to 27.06%in G-mean,and 4.69%to 18.78%in AUC.These show that the proposed method is capable of more efficiently improving the classification performance of imbalanced data.展开更多
The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized nature.Intrusion detection is one of the key methodologies utilized to ensure...The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized nature.Intrusion detection is one of the key methodologies utilized to ensure the security of the network.Conventional intrusion detection mechanisms have issues such as higher misclassification rates,increased model complexity,insignificant feature extraction,increased training time,increased run time complexity,computation overhead,failure to identify new attacks,increased energy consumption,and a variety of other factors that limit the performance of the intrusion system model.In this research a security framework for WSN-IoT,through a deep learning technique is introduced using Modified Fuzzy-Adaptive DenseNet(MF_AdaDenseNet)and is benchmarked with datasets like NSL-KDD,UNSWNB15,CIDDS-001,Edge IIoT,Bot IoT.In this,the optimal feature selection using Capturing Dingo Optimization(CDO)is devised to acquire relevant features by removing redundant features.The proposed MF_AdaDenseNet intrusion detection model offers significant benefits by utilizing optimal feature selection with the CDO algorithm.This results in enhanced Detection Capacity with minimal computation complexity,as well as a reduction in False Alarm Rate(FAR)due to the consideration of classification error in the fitness estimation.As a result,the combined CDO-based feature selection and MF_AdaDenseNet intrusion detection mechanism outperform other state-of-the-art techniques,achieving maximal Detection Capacity,precision,recall,and F-Measure of 99.46%,99.54%,99.91%,and 99.68%,respectively,along with minimal FAR and Mean Absolute Error(MAE)of 0.9%and 0.11.展开更多
Through semi-supervised learning and knowledge inheritance,a novel Takagi-Sugeno-Kang(TSK)fuzzy system framework is proposed for epilepsy data classification in this study.The new method is based on the maximum mean d...Through semi-supervised learning and knowledge inheritance,a novel Takagi-Sugeno-Kang(TSK)fuzzy system framework is proposed for epilepsy data classification in this study.The new method is based on the maximum mean discrepancy(MMD)method and TSK fuzzy system,as a basic model for the classification of epilepsy data.First,formedical data,the interpretability of TSK fuzzy systems can ensure that the prediction results are traceable and safe.Second,in view of the deviation in the data distribution between the real source domain and the target domain,MMD is used to measure the distance between different data distributions.The objective function is constructed according to the MMD distance,and the distribution distance of different datasets is minimized to find the similar characteristics of different datasets.We introduce semi-supervised learning to further explore the relationship between data.Based on the MMD method,a semi-supervised learning(SSL)-MMD method is constructed by using pseudo-tags to realize the data distribution alignment of the same category.In addition,the idea of knowledge dissemination is used to learn pseudo-tags as additional data features.Finally,for epilepsy classification,the cross-domain TSK fuzzy system uses the cross-entropy function as the objective function and adopts the back-propagation strategy to optimize the parameters.The experimental results show that the new method can process complex epilepsy data and identify whether patients have epilepsy.展开更多
A reinforcemen based fuzzy neural network control with automatic rule generation (RBFNNC) is proposed. A set of optimized fuzzy control rules can be automatically generated through reinforcement learning based on the...A reinforcemen based fuzzy neural network control with automatic rule generation (RBFNNC) is proposed. A set of optimized fuzzy control rules can be automatically generated through reinforcement learning based on the state variables of object system. RBFNNC was applied to a cart pole balancing system and simulation result shows significant improvements on the rule generation.展开更多
Project-based learning has been in widespread use in education. However, project managers are unaware of the students’ lack of experience and treat them as if they were professional staff. This paper proposes the app...Project-based learning has been in widespread use in education. However, project managers are unaware of the students’ lack of experience and treat them as if they were professional staff. This paper proposes the application of a fuzzy failure mode and effects analysis model for project-based software engineering education. This method integrates the fuzzy rule-based system with learning agents. The agents construct the membership function from historical data. Data are processed by a clustering process that facilitates the construction of the membership function. It helps students who lack experience in risk assessment to develop their expertise in that skill. The paper also suggests a classification technique for a fuzzy rule-based system that can be used to judge risk based on a fuzzy inference system. The student project will thus be further enhanced with respect to risk assessment. We then discuss the design of experiments to verify the proposed model.展开更多
Aim To build an adaptive fuzzy neural controller and simulate it. Methods\ Fuzzy logic and back propagation(BP) algorithm are combined to utilize their advantages while avoiding the disadvantages. Results and Conclus...Aim To build an adaptive fuzzy neural controller and simulate it. Methods\ Fuzzy logic and back propagation(BP) algorithm are combined to utilize their advantages while avoiding the disadvantages. Results and Conclusion\ Simulation results of the third order plant with disturbances and dead times show the validity of the presented controller. The presented controller can control cases that preceding controllers were unable to control.展开更多
This research proposes a machine learning approach using fuzzy logic to build an information retrieval system for the next crop rotation.In case-based reasoning systems,case representation is critical,and thus,researc...This research proposes a machine learning approach using fuzzy logic to build an information retrieval system for the next crop rotation.In case-based reasoning systems,case representation is critical,and thus,researchers have thoroughly investigated textual,attribute-value pair,and ontological representations.As big databases result in slow case retrieval,this research suggests a fast case retrieval strategy based on an associated representation,so that,cases are interrelated in both either similar or dissimilar cases.As soon as a new case is recorded,it is compared to prior data to find a relative match.The proposed method is worked on the number of cases and retrieval accuracy between the related case representation and conventional approaches.Hierarchical Long Short-Term Memory(HLSTM)is used to evaluate the efficiency,similarity of the models,and fuzzy rules are applied to predict the environmental condition and soil quality during a particular time of the year.Based on the results,the proposed approaches allows for rapid case retrieval with high accuracy.展开更多
Empirical and deterministic models have not proven to be effective in path loss predictions because of the problems of computational complexities, low accuracies, and inability to generalize. To solve these problems r...Empirical and deterministic models have not proven to be effective in path loss predictions because of the problems of computational complexities, low accuracies, and inability to generalize. To solve these problems relating to path loss predictions, this article presents an optimal path loss propagation model developed at 3.4 GHz with the use of fuzzy logic. We introduced Fuzzy logic to accurately represent all forms of uncertainties in the data spectrum as the signal propagates from the transceiver to the receiver, thereby producing accurate results. Experimental data were collected across Cyprus at 3.4 GHz and compared with three existing path loss models. The fuzzy-logic path loss prediction model was then developed and compared with the experimental data and with each of the theoretical empirical models, the newly developed model predicted signal loss with the greatest accuracy as it gives the lowest root-mean-square error. The newly developed model is very efficient for signal propagation and path loss prediction.展开更多
基金funded by the National Science Foundation of China(62006068)Hebei Natural Science Foundation(A2021402008),Natural Science Foundation of Scientific Research Project of Higher Education in Hebei Province(ZD2020185,QN2020188)333 Talent Supported Project of Hebei Province(C20221026).
文摘Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship between data attributes.However,the creation of fuzzy rules typically depends on expert knowledge,which may not fully leverage the label information in training data and may be subjective.To address this issue,a novel fuzzy rule oversampling approach is developed based on the learning vector quantization(LVQ)algorithm.In this method,the label information of the training data is utilized to determine the antecedent part of If-Then fuzzy rules by dynamically dividing attribute intervals using LVQ.Subsequently,fuzzy rules are generated and adjusted to calculate rule weights.The number of new samples to be synthesized for each rule is then computed,and samples from the minority class are synthesized based on the newly generated fuzzy rules.This results in the establishment of a fuzzy rule oversampling method based on LVQ.To evaluate the effectiveness of this method,comparative experiments are conducted on 12 publicly available imbalance datasets with five other sampling techniques in combination with the support function machine.The experimental results demonstrate that the proposed method can significantly enhance the classification algorithm across seven performance indicators,including a boost of 2.15%to 12.34%in Accuracy,6.11%to 27.06%in G-mean,and 4.69%to 18.78%in AUC.These show that the proposed method is capable of more efficiently improving the classification performance of imbalanced data.
基金Authors extend their appreciation to King Saud University for funding the publication of this research through the Researchers Supporting Project number(RSPD2024R809),King Saud University,Riyadh,Saudi Arabia.
文摘The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized nature.Intrusion detection is one of the key methodologies utilized to ensure the security of the network.Conventional intrusion detection mechanisms have issues such as higher misclassification rates,increased model complexity,insignificant feature extraction,increased training time,increased run time complexity,computation overhead,failure to identify new attacks,increased energy consumption,and a variety of other factors that limit the performance of the intrusion system model.In this research a security framework for WSN-IoT,through a deep learning technique is introduced using Modified Fuzzy-Adaptive DenseNet(MF_AdaDenseNet)and is benchmarked with datasets like NSL-KDD,UNSWNB15,CIDDS-001,Edge IIoT,Bot IoT.In this,the optimal feature selection using Capturing Dingo Optimization(CDO)is devised to acquire relevant features by removing redundant features.The proposed MF_AdaDenseNet intrusion detection model offers significant benefits by utilizing optimal feature selection with the CDO algorithm.This results in enhanced Detection Capacity with minimal computation complexity,as well as a reduction in False Alarm Rate(FAR)due to the consideration of classification error in the fitness estimation.As a result,the combined CDO-based feature selection and MF_AdaDenseNet intrusion detection mechanism outperform other state-of-the-art techniques,achieving maximal Detection Capacity,precision,recall,and F-Measure of 99.46%,99.54%,99.91%,and 99.68%,respectively,along with minimal FAR and Mean Absolute Error(MAE)of 0.9%and 0.11.
基金supported by the Fifth Key Project of Jiangsu Vocational Education Teaching Reform Research under Grant ZZZ13in part by the Science and Technology Project of Changzhou City under Grant CE20215032.
文摘Through semi-supervised learning and knowledge inheritance,a novel Takagi-Sugeno-Kang(TSK)fuzzy system framework is proposed for epilepsy data classification in this study.The new method is based on the maximum mean discrepancy(MMD)method and TSK fuzzy system,as a basic model for the classification of epilepsy data.First,formedical data,the interpretability of TSK fuzzy systems can ensure that the prediction results are traceable and safe.Second,in view of the deviation in the data distribution between the real source domain and the target domain,MMD is used to measure the distance between different data distributions.The objective function is constructed according to the MMD distance,and the distribution distance of different datasets is minimized to find the similar characteristics of different datasets.We introduce semi-supervised learning to further explore the relationship between data.Based on the MMD method,a semi-supervised learning(SSL)-MMD method is constructed by using pseudo-tags to realize the data distribution alignment of the same category.In addition,the idea of knowledge dissemination is used to learn pseudo-tags as additional data features.Finally,for epilepsy classification,the cross-domain TSK fuzzy system uses the cross-entropy function as the objective function and adopts the back-propagation strategy to optimize the parameters.The experimental results show that the new method can process complex epilepsy data and identify whether patients have epilepsy.
文摘A reinforcemen based fuzzy neural network control with automatic rule generation (RBFNNC) is proposed. A set of optimized fuzzy control rules can be automatically generated through reinforcement learning based on the state variables of object system. RBFNNC was applied to a cart pole balancing system and simulation result shows significant improvements on the rule generation.
文摘Project-based learning has been in widespread use in education. However, project managers are unaware of the students’ lack of experience and treat them as if they were professional staff. This paper proposes the application of a fuzzy failure mode and effects analysis model for project-based software engineering education. This method integrates the fuzzy rule-based system with learning agents. The agents construct the membership function from historical data. Data are processed by a clustering process that facilitates the construction of the membership function. It helps students who lack experience in risk assessment to develop their expertise in that skill. The paper also suggests a classification technique for a fuzzy rule-based system that can be used to judge risk based on a fuzzy inference system. The student project will thus be further enhanced with respect to risk assessment. We then discuss the design of experiments to verify the proposed model.
文摘Aim To build an adaptive fuzzy neural controller and simulate it. Methods\ Fuzzy logic and back propagation(BP) algorithm are combined to utilize their advantages while avoiding the disadvantages. Results and Conclusion\ Simulation results of the third order plant with disturbances and dead times show the validity of the presented controller. The presented controller can control cases that preceding controllers were unable to control.
基金The authors would like to express their gratitude to the ministry of education and the deanship of scientific research-Najran University-Kingdom of Saudi Arabia for their Financial and Technical support under code number(code NU/-/SERC/10/643).
文摘This research proposes a machine learning approach using fuzzy logic to build an information retrieval system for the next crop rotation.In case-based reasoning systems,case representation is critical,and thus,researchers have thoroughly investigated textual,attribute-value pair,and ontological representations.As big databases result in slow case retrieval,this research suggests a fast case retrieval strategy based on an associated representation,so that,cases are interrelated in both either similar or dissimilar cases.As soon as a new case is recorded,it is compared to prior data to find a relative match.The proposed method is worked on the number of cases and retrieval accuracy between the related case representation and conventional approaches.Hierarchical Long Short-Term Memory(HLSTM)is used to evaluate the efficiency,similarity of the models,and fuzzy rules are applied to predict the environmental condition and soil quality during a particular time of the year.Based on the results,the proposed approaches allows for rapid case retrieval with high accuracy.
文摘Empirical and deterministic models have not proven to be effective in path loss predictions because of the problems of computational complexities, low accuracies, and inability to generalize. To solve these problems relating to path loss predictions, this article presents an optimal path loss propagation model developed at 3.4 GHz with the use of fuzzy logic. We introduced Fuzzy logic to accurately represent all forms of uncertainties in the data spectrum as the signal propagates from the transceiver to the receiver, thereby producing accurate results. Experimental data were collected across Cyprus at 3.4 GHz and compared with three existing path loss models. The fuzzy-logic path loss prediction model was then developed and compared with the experimental data and with each of the theoretical empirical models, the newly developed model predicted signal loss with the greatest accuracy as it gives the lowest root-mean-square error. The newly developed model is very efficient for signal propagation and path loss prediction.