期刊文献+
共找到103篇文章
< 1 2 6 >
每页显示 20 50 100
Learning Vector Quantization-Based Fuzzy Rules Oversampling Method
1
作者 Jiqiang Chen Ranran Han +1 位作者 Dongqing Zhang Litao Ma 《Computers, Materials & Continua》 SCIE EI 2024年第6期5067-5082,共16页
Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship ... Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship between data attributes.However,the creation of fuzzy rules typically depends on expert knowledge,which may not fully leverage the label information in training data and may be subjective.To address this issue,a novel fuzzy rule oversampling approach is developed based on the learning vector quantization(LVQ)algorithm.In this method,the label information of the training data is utilized to determine the antecedent part of If-Then fuzzy rules by dynamically dividing attribute intervals using LVQ.Subsequently,fuzzy rules are generated and adjusted to calculate rule weights.The number of new samples to be synthesized for each rule is then computed,and samples from the minority class are synthesized based on the newly generated fuzzy rules.This results in the establishment of a fuzzy rule oversampling method based on LVQ.To evaluate the effectiveness of this method,comparative experiments are conducted on 12 publicly available imbalance datasets with five other sampling techniques in combination with the support function machine.The experimental results demonstrate that the proposed method can significantly enhance the classification algorithm across seven performance indicators,including a boost of 2.15%to 12.34%in Accuracy,6.11%to 27.06%in G-mean,and 4.69%to 18.78%in AUC.These show that the proposed method is capable of more efficiently improving the classification performance of imbalanced data. 展开更多
关键词 OVERSAMPLING fuzzy rules learning vector quantization imbalanced data support function machine
下载PDF
A Secure Framework for WSN-IoT Using Deep Learning for Enhanced Intrusion Detection
2
作者 Chandraumakantham Om Kumar Sudhakaran Gajendran +2 位作者 Suguna Marappan Mohammed Zakariah Abdulaziz S.Almazyad 《Computers, Materials & Continua》 SCIE EI 2024年第10期471-501,共31页
The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized nature.Intrusion detection is one of the key methodologies utilized to ensure... The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized nature.Intrusion detection is one of the key methodologies utilized to ensure the security of the network.Conventional intrusion detection mechanisms have issues such as higher misclassification rates,increased model complexity,insignificant feature extraction,increased training time,increased run time complexity,computation overhead,failure to identify new attacks,increased energy consumption,and a variety of other factors that limit the performance of the intrusion system model.In this research a security framework for WSN-IoT,through a deep learning technique is introduced using Modified Fuzzy-Adaptive DenseNet(MF_AdaDenseNet)and is benchmarked with datasets like NSL-KDD,UNSWNB15,CIDDS-001,Edge IIoT,Bot IoT.In this,the optimal feature selection using Capturing Dingo Optimization(CDO)is devised to acquire relevant features by removing redundant features.The proposed MF_AdaDenseNet intrusion detection model offers significant benefits by utilizing optimal feature selection with the CDO algorithm.This results in enhanced Detection Capacity with minimal computation complexity,as well as a reduction in False Alarm Rate(FAR)due to the consideration of classification error in the fitness estimation.As a result,the combined CDO-based feature selection and MF_AdaDenseNet intrusion detection mechanism outperform other state-of-the-art techniques,achieving maximal Detection Capacity,precision,recall,and F-Measure of 99.46%,99.54%,99.91%,and 99.68%,respectively,along with minimal FAR and Mean Absolute Error(MAE)of 0.9%and 0.11. 展开更多
关键词 Deep learning intrusion detection fuzzy rules feature selection false alarm rate ACCURACY wireless sensor networks
下载PDF
Cross-Domain TSK Fuzzy System Based on Semi-Supervised Learning for Epilepsy Classification
3
作者 Zaihe Cheng Yuwen Tao +2 位作者 Xiaoqing Gu Yizhang Jiang Pengjiang Qian 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1613-1633,共21页
Through semi-supervised learning and knowledge inheritance,a novel Takagi-Sugeno-Kang(TSK)fuzzy system framework is proposed for epilepsy data classification in this study.The new method is based on the maximum mean d... Through semi-supervised learning and knowledge inheritance,a novel Takagi-Sugeno-Kang(TSK)fuzzy system framework is proposed for epilepsy data classification in this study.The new method is based on the maximum mean discrepancy(MMD)method and TSK fuzzy system,as a basic model for the classification of epilepsy data.First,formedical data,the interpretability of TSK fuzzy systems can ensure that the prediction results are traceable and safe.Second,in view of the deviation in the data distribution between the real source domain and the target domain,MMD is used to measure the distance between different data distributions.The objective function is constructed according to the MMD distance,and the distribution distance of different datasets is minimized to find the similar characteristics of different datasets.We introduce semi-supervised learning to further explore the relationship between data.Based on the MMD method,a semi-supervised learning(SSL)-MMD method is constructed by using pseudo-tags to realize the data distribution alignment of the same category.In addition,the idea of knowledge dissemination is used to learn pseudo-tags as additional data features.Finally,for epilepsy classification,the cross-domain TSK fuzzy system uses the cross-entropy function as the objective function and adopts the back-propagation strategy to optimize the parameters.The experimental results show that the new method can process complex epilepsy data and identify whether patients have epilepsy. 展开更多
关键词 Takagi-Sugeno-Kang fuzzy systems back propagation semi-supervised learning inheritancemechanism transfer learning
下载PDF
ReinforcementBased Fuzzy Neural Network Control with Automatic Rule Generation
4
作者 WU Geng feng DONG Jian quan CHEN Yi min CAO Min ZHANG Yue (School of Computer Engineering and Science, Shanghai University) FU Zhong qian (University of Science and Technology of China) 《Advances in Manufacturing》 SCIE CAS 1999年第4期282-286,共5页
A reinforcemen based fuzzy neural network control with automatic rule generation (RBFNNC) is proposed. A set of optimized fuzzy control rules can be automatically generated through reinforcement learning based on the... A reinforcemen based fuzzy neural network control with automatic rule generation (RBFNNC) is proposed. A set of optimized fuzzy control rules can be automatically generated through reinforcement learning based on the state variables of object system. RBFNNC was applied to a cart pole balancing system and simulation result shows significant improvements on the rule generation. 展开更多
关键词 reinforcement learning fuzzy neural network rule generation
下载PDF
Applying Fuzzy Rule-Based System on FMEA to Assess the Risks on Project-Based Software Engineering Education
5
作者 Issarapong Khuankrue Fumihiro Kumeno +1 位作者 Yutaro Ohashi Yasuhiro Tsujimura 《Journal of Software Engineering and Applications》 2017年第7期591-604,共14页
Project-based learning has been in widespread use in education. However, project managers are unaware of the students’ lack of experience and treat them as if they were professional staff. This paper proposes the app... Project-based learning has been in widespread use in education. However, project managers are unaware of the students’ lack of experience and treat them as if they were professional staff. This paper proposes the application of a fuzzy failure mode and effects analysis model for project-based software engineering education. This method integrates the fuzzy rule-based system with learning agents. The agents construct the membership function from historical data. Data are processed by a clustering process that facilitates the construction of the membership function. It helps students who lack experience in risk assessment to develop their expertise in that skill. The paper also suggests a classification technique for a fuzzy rule-based system that can be used to judge risk based on a fuzzy inference system. The student project will thus be further enhanced with respect to risk assessment. We then discuss the design of experiments to verify the proposed model. 展开更多
关键词 Risk Assessment PROJECT-BASED learning Failure Mode and Effects Analysis fuzzy rule-BASED System Intelligent AGENTS
下载PDF
Adaptive Fuzzy Neural Control of Dynamic System
6
作者 赵保军 韩月秋 毛二可 《Journal of Beijing Institute of Technology》 EI CAS 1999年第2期85-89,共5页
Aim To build an adaptive fuzzy neural controller and simulate it. Methods\ Fuzzy logic and back propagation(BP) algorithm are combined to utilize their advantages while avoiding the disadvantages. Results and Conclus... Aim To build an adaptive fuzzy neural controller and simulate it. Methods\ Fuzzy logic and back propagation(BP) algorithm are combined to utilize their advantages while avoiding the disadvantages. Results and Conclusion\ Simulation results of the third order plant with disturbances and dead times show the validity of the presented controller. The presented controller can control cases that preceding controllers were unable to control. 展开更多
关键词 error back propagation fuzzy logic learning rate nonlinear time varying parameter
下载PDF
产生Fuzzy规则的学习算法
7
作者 黄冬梅 花强 于向东 《河北大学学报(自然科学版)》 CAS 1998年第S1期1-4,共4页
给出了产生Fuzzy规则的学习算法,从决策角度看,所提算法产生的Fuzzy规则更贴近于实际,便于有效地处理Fuzzy信息。
关键词 机器学习 决策树 fuzzy规则
下载PDF
Fuzzy-HLSTM(Hierarchical Long Short-Term Memory)for Agricultural Based Information Mining
8
作者 Ahmed Abdu Alattab Mohammed Eid Ibrahim +2 位作者 Reyazur Rashid Irshad Anwar Ali Yahya Amin A.Al-Awady 《Computers, Materials & Continua》 SCIE EI 2023年第2期2397-2413,共17页
This research proposes a machine learning approach using fuzzy logic to build an information retrieval system for the next crop rotation.In case-based reasoning systems,case representation is critical,and thus,researc... This research proposes a machine learning approach using fuzzy logic to build an information retrieval system for the next crop rotation.In case-based reasoning systems,case representation is critical,and thus,researchers have thoroughly investigated textual,attribute-value pair,and ontological representations.As big databases result in slow case retrieval,this research suggests a fast case retrieval strategy based on an associated representation,so that,cases are interrelated in both either similar or dissimilar cases.As soon as a new case is recorded,it is compared to prior data to find a relative match.The proposed method is worked on the number of cases and retrieval accuracy between the related case representation and conventional approaches.Hierarchical Long Short-Term Memory(HLSTM)is used to evaluate the efficiency,similarity of the models,and fuzzy rules are applied to predict the environmental condition and soil quality during a particular time of the year.Based on the results,the proposed approaches allows for rapid case retrieval with high accuracy. 展开更多
关键词 Machine learning AGRICULTURE IOT HLSTM fuzzy rules
下载PDF
A Fuzzy-Logic Based Path Loss Model at 3.4 GHz for LTE Networks
9
作者 Stephen Ojo Taiwo P. Ojo Victor Ojong Etta 《Open Journal of Applied Sciences》 CAS 2022年第7期1271-1283,共13页
Empirical and deterministic models have not proven to be effective in path loss predictions because of the problems of computational complexities, low accuracies, and inability to generalize. To solve these problems r... Empirical and deterministic models have not proven to be effective in path loss predictions because of the problems of computational complexities, low accuracies, and inability to generalize. To solve these problems relating to path loss predictions, this article presents an optimal path loss propagation model developed at 3.4 GHz with the use of fuzzy logic. We introduced Fuzzy logic to accurately represent all forms of uncertainties in the data spectrum as the signal propagates from the transceiver to the receiver, thereby producing accurate results. Experimental data were collected across Cyprus at 3.4 GHz and compared with three existing path loss models. The fuzzy-logic path loss prediction model was then developed and compared with the experimental data and with each of the theoretical empirical models, the newly developed model predicted signal loss with the greatest accuracy as it gives the lowest root-mean-square error. The newly developed model is very efficient for signal propagation and path loss prediction. 展开更多
关键词 Signal Loss fuzzy-LOGIC Machine learning Signal propagation ACCURACY Empirical DETERMINISTIC
下载PDF
海上编队协同防空作战规则反演方法
10
作者 李洋 刘耿 +2 位作者 李奔 胡晓惠 樊垚 《舰船科学技术》 北大核心 2024年第8期180-184,共5页
为解决海上编队协同防空作战中多任务多平台的协同决策问题,提出基于遗传模糊逻辑树的协同防空作战规则反演方法。设计面向威胁判断、目标分配、火力控制等指控决策的级联式模糊推理系统,采用演化学习从博弈对抗中学习和反演协同作战规... 为解决海上编队协同防空作战中多任务多平台的协同决策问题,提出基于遗传模糊逻辑树的协同防空作战规则反演方法。设计面向威胁判断、目标分配、火力控制等指控决策的级联式模糊推理系统,采用演化学习从博弈对抗中学习和反演协同作战规则。作战仿真测试表明,该方法能够适应战场的动态变化且决策时延低于1 s。基于遗传模糊逻辑树的作战规则反演缓解了深度强化学习等面临的可解释性问题和作战仿真中的奖励稀疏问题,同时反演生成的作战规则也为剖析战场规律提供了新的知识来源。 展开更多
关键词 作战规则 模糊逻辑 演化学习 防空作战
下载PDF
自适应神经网络在负荷动态建模中的应用 被引量:20
11
作者 顾丹珍 艾芊 +1 位作者 陈陈 沈善德 《中国电机工程学报》 EI CSCD 北大核心 2007年第16期31-36,共6页
人工神经网络(ANN)具有的自适应、自学习、非线性重构等特点,使之成为解决电力系统负荷建模的有效途径。该文利用模糊理论对典型BP神经网络(TBP)的学习速度因子和权值惯性因子进行修正,采用自构形学习算法对网络拓扑2个方面进行改进,提... 人工神经网络(ANN)具有的自适应、自学习、非线性重构等特点,使之成为解决电力系统负荷建模的有效途径。该文利用模糊理论对典型BP神经网络(TBP)的学习速度因子和权值惯性因子进行修正,采用自构形学习算法对网络拓扑2个方面进行改进,提出自适应神经网络(ABP)。结合现场试验和仿真数据,对TBP和ABP在负荷建模的速度和精度2方面进行了比较。同时,就负荷建模问题对自适应神经网络模型阶次和隐层神经元个数等因素进行了探讨。 展开更多
关键词 负荷模型 自适应前馈网络 模糊理论 自构形学习锋法
下载PDF
一种新的基于神经模糊推理网络的复杂系统模糊辨识方法 被引量:12
12
作者 李佳宁 易建强 +1 位作者 赵冬斌 西广成 《自动化学报》 EI CSCD 北大核心 2006年第5期695-703,共9页
针对基于输入输出数据的复杂系统的模糊辨识问题,提出了一种新的神经模糊推理网络及相应的学习算法.学习算法被应用于系统的结构辨识与参数辨识.在结构辨识阶段,介绍了一种新的直接从输入输出数据中抽取和优化模糊规则的学习算法;在... 针对基于输入输出数据的复杂系统的模糊辨识问题,提出了一种新的神经模糊推理网络及相应的学习算法.学习算法被应用于系统的结构辨识与参数辨识.在结构辨识阶段,介绍了一种新的直接从输入输出数据中抽取和优化模糊规则的学习算法;在参数辨识阶段,提出和推导了一种非监督学习和监督学习相结合的混合式学习算法,实现模糊隶属函数的初步调整和优化.仿真结果表明,本文的方法可以同时满足对辨识精度、收敛速度、可读性和规则数的要求. 展开更多
关键词 模糊辨识 神经模糊网络 规则抽取 非监督学习 监督学习
下载PDF
用模糊神经网络建立GNP与产业结构的关系模型 被引量:6
13
作者 荣莉莉 王众托 《大连理工大学学报》 CAS CSCD 北大核心 1999年第1期114-119,共6页
给出了一种建立GNP值与产业结构的关系模型的算法.利用一个多输入单输出的模糊神经网络(MISO-FNN),提取关于人均GNP值与工业比例、农业比例及人口密度的关系的模糊规则.利用模糊神经网络进行学习,调整隶属函数的形... 给出了一种建立GNP值与产业结构的关系模型的算法.利用一个多输入单输出的模糊神经网络(MISO-FNN),提取关于人均GNP值与工业比例、农业比例及人口密度的关系的模糊规则.利用模糊神经网络进行学习,调整隶属函数的形状及结论部分的参数;同时,还提出了一种在学习过程中动态筛选模糊规则的方法.仿真结果验证了算法的有效性. 展开更多
关键词 GNP 关系模型 模糊神经网络 产业结构
下载PDF
基于规则的专家系统中不确定性推理的研究 被引量:27
14
作者 陈明亮 李怀祖 《计算机工程与应用》 CSCD 北大核心 2000年第5期50-53,共4页
提出了权值法和修正权值法两种不确定性推理算法,与常用的几种方法相比,权值法根据各证据重要程度的不同,区别对待证据的可信度信息,同时充分利用每一条信息;修正权值法除了具有权值法的优点外,又区分了可信度分布的差异。运用修... 提出了权值法和修正权值法两种不确定性推理算法,与常用的几种方法相比,权值法根据各证据重要程度的不同,区别对待证据的可信度信息,同时充分利用每一条信息;修正权值法除了具有权值法的优点外,又区分了可信度分布的差异。运用修正权值法已成功建造了多个实用专家系统。 展开更多
关键词 专家系统 模糊规则 不确定性推理 传播函数
下载PDF
从样本数据中获取模糊规则的一种算法 被引量:44
15
作者 荣莉莉 王众托 《系统工程学报》 CSCD 1998年第1期57-65,共9页
提出一种直接从样本数据中获取模糊规则的算法.模糊规则的隶属函数通过计算样本数据的方差与期望而得出,规则的抽取通过一个5层模糊神经网络实现,该算法包括两部分,第1部分确定出最佳规则;第2部分通过学习提高推理精度,通过仿... 提出一种直接从样本数据中获取模糊规则的算法.模糊规则的隶属函数通过计算样本数据的方差与期望而得出,规则的抽取通过一个5层模糊神经网络实现,该算法包括两部分,第1部分确定出最佳规则;第2部分通过学习提高推理精度,通过仿真验证了该算法的有效性. 展开更多
关键词 模糊神经网络 规则抽取 隶属函数 样本数据 学习算法
下载PDF
一种基于GA的模糊控制规则优化新方法 被引量:8
16
作者 邵克勇 张鸿雁 +2 位作者 李飞 谢维志 易江 《化工自动化及仪表》 CAS 北大核心 2011年第3期261-264,306,共5页
针对动态环境专家经验模糊控制规则效果欠佳的问题,提出一种改进的十进制基因编码自适应遗传算法,自动生成全局最优的控制规则。新算法引用稳态繁殖思想改进初始种群的生成方法,避免产生大量不合理个体影响进化进度,并引入动态变异率和... 针对动态环境专家经验模糊控制规则效果欠佳的问题,提出一种改进的十进制基因编码自适应遗传算法,自动生成全局最优的控制规则。新算法引用稳态繁殖思想改进初始种群的生成方法,避免产生大量不合理个体影响进化进度,并引入动态变异率和一种新型的自适应变异算子调整种群的多样性,克服了"早熟"的现象。最后将获得的最优规则应用于设计模糊控制器。仿真结果表明,控制品质有较大的改善和提高。 展开更多
关键词 模糊控制规则 十进制 稳态繁殖 遗传算法
下载PDF
模糊规则提取的两种方法性能分析 被引量:10
17
作者 苗立靖 杨杰 黄欣 《模糊系统与数学》 CSCD 1999年第3期16-21,共6页
机器学习近年来得到越来越多的重视,模糊规则提取是其中的重要的一个方向。本文介绍了两种自动提取模糊规则的方法,分别是基于多层前向网络和基于遗传算法的模糊规则自动生成。并且。
关键词 机器学习 模糊规则 多层前向网络 规则生成
下载PDF
基于自适应CPN的规则自学习模糊控制器设计 被引量:2
18
作者 马勇 杨煜普 许晓鸣 《上海交通大学学报》 EI CAS CSCD 北大核心 1999年第5期577-580,共4页
基于扩展Kohonen的自组织映射和Grossberg的竞争算法,得到了一种高度自适应的双向对传网络(CPN),并给出了一类基于此类网络的模糊控制器.根据经验知识对网络离线学习,确定基本的控制规则,利用在线学习算法,... 基于扩展Kohonen的自组织映射和Grossberg的竞争算法,得到了一种高度自适应的双向对传网络(CPN),并给出了一类基于此类网络的模糊控制器.根据经验知识对网络离线学习,确定基本的控制规则,利用在线学习算法,实现了规则的自学习.在此算法中,控制器能够自动确定满足控制要求所需规则的个数,并且根据控制目标能够自动获取和校正控制规则. 展开更多
关键词 双向对传网络 模糊控制器 规则自学习 自适应
下载PDF
改进的模糊神经网络学习规则研究 被引量:4
19
作者 魏延 曹长修 汪平 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第1期51-54,共4页
在S Stoeva提出的基于相同样本及网络输出的模糊反向传播算法基础上,通过对基于极大-极小模糊算子的模糊神经元模型的研究,对含有一个隐含层的单输出模糊神经网络,提出了依赖于各模糊神经元输出的调整模糊权值的网络学习算法,该算法具... 在S Stoeva提出的基于相同样本及网络输出的模糊反向传播算法基础上,通过对基于极大-极小模糊算子的模糊神经元模型的研究,对含有一个隐含层的单输出模糊神经网络,提出了依赖于各模糊神经元输出的调整模糊权值的网络学习算法,该算法具有直观和可操作性强的特点.并以汽轮发电机组的状态监测为例进行仿真,仿真结果表明网络学习效果较好. 展开更多
关键词 模糊神经网络 极大-极小模糊算子 学习规则
下载PDF
具有模糊信息和自学习权重的分布式检测算法 被引量:6
20
作者 刘源 崔宁周 +1 位作者 谢维信 李隐峰 《电子学报》 EI CAS CSCD 北大核心 1999年第3期9-12,共4页
本文研究了一种由局部自适应模糊检测器和在线自学习融合算法所构成的分布式信号检测系统的设计方法由模糊集对不精确信号参数的局部检测器进行建模,该模糊模型可自适应不精确信号参数的变化,融合中心以最佳融合规则作为目标函数在线... 本文研究了一种由局部自适应模糊检测器和在线自学习融合算法所构成的分布式信号检测系统的设计方法由模糊集对不精确信号参数的局部检测器进行建模,该模糊模型可自适应不精确信号参数的变化,融合中心以最佳融合规则作为目标函数在线自学习局部判决的权重.局部模糊检测器的鲁律性和自学习融合算法的自适应性使该分布式检测系统在不确定环境下的检测性能得到提高也使该系统能够处理未知分布的未知参数以及非随机未知参数的分布式信号检测. 展开更多
关键词 信号检测 模糊建模 自学习融合算法 检测算法
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部