Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship ...Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship between data attributes.However,the creation of fuzzy rules typically depends on expert knowledge,which may not fully leverage the label information in training data and may be subjective.To address this issue,a novel fuzzy rule oversampling approach is developed based on the learning vector quantization(LVQ)algorithm.In this method,the label information of the training data is utilized to determine the antecedent part of If-Then fuzzy rules by dynamically dividing attribute intervals using LVQ.Subsequently,fuzzy rules are generated and adjusted to calculate rule weights.The number of new samples to be synthesized for each rule is then computed,and samples from the minority class are synthesized based on the newly generated fuzzy rules.This results in the establishment of a fuzzy rule oversampling method based on LVQ.To evaluate the effectiveness of this method,comparative experiments are conducted on 12 publicly available imbalance datasets with five other sampling techniques in combination with the support function machine.The experimental results demonstrate that the proposed method can significantly enhance the classification algorithm across seven performance indicators,including a boost of 2.15%to 12.34%in Accuracy,6.11%to 27.06%in G-mean,and 4.69%to 18.78%in AUC.These show that the proposed method is capable of more efficiently improving the classification performance of imbalanced data.展开更多
As per World Health Organization report which was released in the year of 2019,Diabetes claimed the lives of approximately 1.5 million individuals globally in 2019 and around 450 million people are affected by diabete...As per World Health Organization report which was released in the year of 2019,Diabetes claimed the lives of approximately 1.5 million individuals globally in 2019 and around 450 million people are affected by diabetes all over the world.Hence it is inferred that diabetes is rampant across the world with the majority of the world population being affected by it.Among the diabetics,it can be observed that a large number of people had failed to identify their disease in the initial stage itself and hence the disease level moved from Type-1 to Type-2.To avoid this situation,we propose a new fuzzy logic based neural classifier for early detection of diabetes.A set of new neuro-fuzzy rules is introduced with time constraints that are applied for thefirst level classification.These levels are further refined by using the Fuzzy Cognitive Maps(FCM)with time intervals for making thefinal decision over the classification process.The main objective of this proposed model is to detect the diabetes level based on the time.Also,the set of neuro-fuzzy rules are used for selecting the most contributing values over the decision-making process in diabetes prediction.The proposed model proved its efficiency in performance after experiments conducted not only from the repository but also by using the standard diabetic detection models that are available in the market.展开更多
There are defects such as the low convergence rate and premature phenomenon on the performance of simple genetic algorithms (SGA) as the values of crossover probability (Pc) and mutation probability (Pro) are fi...There are defects such as the low convergence rate and premature phenomenon on the performance of simple genetic algorithms (SGA) as the values of crossover probability (Pc) and mutation probability (Pro) are fixed. To solve the problems, the fuzzy control method and the genetic algorithms were systematically integrated to create a kind of improved fuzzy adaptive genetic algorithm (FAGA) based on the auto-regulating fuzzy rules (ARFR-FAGA). By using the fuzzy control method, the values of Pc and Pm were adjusted according to the evolutional process, and the fuzzy rules were optimized by another genetic algorithm. Experimental results in solving the function optimization problems demonstrate that the convergence rate and solution quality of ARFR-FAGA exceed those of SGA, AGA and fuzzy adaptive genetic algorithm based on expertise (EFAGA) obviously in the global search.展开更多
Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper descri...Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper describes an improved SPSA algorithm, which entails fuzzy adaptive gain sequences, gradient smoothing, and a step rejection procedure to enhance convergence and stability. The proposed fuzzy adaptive simultaneous perturbation approximation (FASPA) algorithm is particularly well suited to problems involving a large number of parameters such as those encountered in nonlinear system identification using neural networks (NNs). Accordingly, a multilayer perceptron (MLP) network with popular training algorithms was used to predicate the system response. We found that an MLP trained by FASPSA had the desired accuracy that was comparable to results obtained by traditional system identification algorithms. Simulation results for typical nonlinear systems demonstrate that the proposed NN architecture trained with FASPSA yields improved system identification as measured by reduced time of convergence and a smaller identification error.展开更多
By the analysis of CORBA technology, distributed technology, multi agent, fuzzy cluster, OA system, expert system and decision support technology, a distributed OA expert system model based on fuzzy rules (DOAES) is ...By the analysis of CORBA technology, distributed technology, multi agent, fuzzy cluster, OA system, expert system and decision support technology, a distributed OA expert system model based on fuzzy rules (DOAES) is proposed. In DOAES, the knowledge and experience of decision makers are processed and transferred into the knowledge base. So the system has the adaptive ability and re study function and the decision results are more scientific and more objective. The DOAES is successfully applied in the management system of invest promotion.展开更多
A fast generation method of fuzzy rules for flux optimization decision-making was proposed in order to extract the linguistic knowledge from numerical data in the process of matter converting. The fuzzy if-then rules ...A fast generation method of fuzzy rules for flux optimization decision-making was proposed in order to extract the linguistic knowledge from numerical data in the process of matter converting. The fuzzy if-then rules with consequent real number were extracted from numerical data, and a linguistic representation method for deriving linguistic rules from fuzzy if-then rules with consequent real numbers was developed. The linguistic representation consisted of The simulat two linguistic variables with the degree of certainty and the storage structure of rule base was described. on results show that the method involves neither the time-consuming iterative learning procedure nor the complicated rule generation mechanisms, and can approximate complex system. The method was applied to determine the flux amount of copper converting furnace in the process of matter converting. The real result shows that the mass fraction of Cu in slag is reduced by 0.5 %.展开更多
Breast cancer remains a significant global health challenge, necessitating effective early detection and prognosis to enhance patient outcomes. Current diagnostic methods, including mammography and MRI, suffer from li...Breast cancer remains a significant global health challenge, necessitating effective early detection and prognosis to enhance patient outcomes. Current diagnostic methods, including mammography and MRI, suffer from limitations such as uncertainty and imprecise data, leading to late-stage diagnoses. To address this, various expert systems have been developed, but many rely on type-1 fuzzy logic and lack mobile-based applications for data collection and feedback to healthcare practitioners. This research investigates the development of an Enhanced Mobile-based Fuzzy Expert system (EMFES) for breast cancer pre-growth prognosis. The study explores the use of type-2 fuzzy logic to enhance accuracy and model uncertainty effectively. Additionally, it evaluates the advantages of employing the python programming language over java for implementation and considers specific risk factors for data collection. The research aims to dynamically generate fuzzy rules, adapting to evolving breast cancer research and patient data. Key research questions focus on the comparative effectiveness of type-2 fuzzy logic, the handling of uncertainty and imprecise data, the integration of mobile-based features, the choice of programming language, and the creation of dynamic fuzzy rules. Furthermore, the study examines the differences between the Mamdani Inference System and the Sugeno Fuzzy Inference method and explores challenges and opportunities in deploying the EMFES on mobile devices. The research identifies a critical gap in existing breast cancer diagnostic systems, emphasizing the need for a comprehensive, mobile-enabled, and adaptable solution by developing an EMFES that leverages Type-2 fuzzy logic, the Sugeno Inference Algorithm, Python Programming, and dynamic fuzzy rule generation. This study seeks to enhance early breast cancer detection and ultimately reduce breast cancer-related mortality.展开更多
To deal with the problem that arises when the conventional fuzzy class-association method applies repetitive scans of the classifier to classify new texts,which has low efficiency, a new approach based on the FCR-tree...To deal with the problem that arises when the conventional fuzzy class-association method applies repetitive scans of the classifier to classify new texts,which has low efficiency, a new approach based on the FCR-tree(fuzzy classification rules tree)for text categorization is proposed.The compactness of the FCR-tree saves significant space in storing a large set of rules when there are many repeated words in the rules.In comparison with classification rules,the fuzzy classification rules contain not only words,but also the fuzzy sets corresponding to the frequencies of words appearing in texts.Therefore,the construction of an FCR-tree and its structure are different from a CR-tree.To debase the difficulty of FCR-tree construction and rules retrieval,more k-FCR-trees are built.When classifying a new text,it is not necessary to search the paths of the sub-trees led by those words not appearing in this text,thus reducing the number of traveling rules.Experimental results show that the proposed approach obviously outperforms the conventional method in efficiency.展开更多
This paper proposes a support vector machine-based fuzzy rules acquisition system(SVM-FRAS) .The character of SVM in extracting support vector provides a mechanism to extract fuzzy If-Then rules from the training data...This paper proposes a support vector machine-based fuzzy rules acquisition system(SVM-FRAS) .The character of SVM in extracting support vector provides a mechanism to extract fuzzy If-Then rules from the training data set.We construct the fuzzy inference system using fuzzy basis function(FBF) .The gradient technique is used to tune the fuzzy rules and the inference system.Theoretical analysis and comparative tests are performed comparing with other fuzzy systems.Experimental results show the SVM-FRAS model possesses good generalization capability as well as high comprehensibility.展开更多
This research proposes a machine learning approach using fuzzy logic to build an information retrieval system for the next crop rotation.In case-based reasoning systems,case representation is critical,and thus,researc...This research proposes a machine learning approach using fuzzy logic to build an information retrieval system for the next crop rotation.In case-based reasoning systems,case representation is critical,and thus,researchers have thoroughly investigated textual,attribute-value pair,and ontological representations.As big databases result in slow case retrieval,this research suggests a fast case retrieval strategy based on an associated representation,so that,cases are interrelated in both either similar or dissimilar cases.As soon as a new case is recorded,it is compared to prior data to find a relative match.The proposed method is worked on the number of cases and retrieval accuracy between the related case representation and conventional approaches.Hierarchical Long Short-Term Memory(HLSTM)is used to evaluate the efficiency,similarity of the models,and fuzzy rules are applied to predict the environmental condition and soil quality during a particular time of the year.Based on the results,the proposed approaches allows for rapid case retrieval with high accuracy.展开更多
Estimating the intention of space objects plays an important role in air-craft design,aviation safety,military and otherfields,and is an important refer-ence basis for air situation analysis and command decision-making...Estimating the intention of space objects plays an important role in air-craft design,aviation safety,military and otherfields,and is an important refer-ence basis for air situation analysis and command decision-making.This paper studies an intention estimation method based on fuzzy theory,combining prob-ability to calculate the intention between two objects.This method takes a space object as the origin of coordinates,observes the target’s distance,speed,relative heading angle,altitude difference,steering trend and etc.,then introduces the spe-cific calculation methods of these parameters.Through calculation,values are input into the fuzzy inference model,andfinally the action intention of the target is obtained through the fuzzy rule table and historical weighted probability.Ver-ified by simulation experiment,the target intention inferred by this method is roughly the same as the actual behavior of the target,which proves that the meth-od for identifying the target intention is effective.展开更多
At present, most of the association rules algorithms are based on the Boolean attribute and single-level association rules mining. But data of the real world has various types, the multi-level and quantitative attribu...At present, most of the association rules algorithms are based on the Boolean attribute and single-level association rules mining. But data of the real world has various types, the multi-level and quantitative attributes are got more and more attention. And the most important step is to mine frequent sets. In this paper, we propose an algorithm that is called fuzzy multiple-level association (FMA) rules to mine frequent sets. It is based on the improved Eclat algorithm that is different to many researchers’ proposed algorithms thatused the Apriori algorithm. We analyze quantitative data’s frequent sets by using the fuzzy theory, dividing the hierarchy of concept and softening the boundary of attributes’ values and frequency. In this paper, we use the vertical-style data and the improved Eclat algorithm to describe the proposed method, we use this algorithm to analyze the data of Beijing logistics route. Experiments show that the algorithm has a good performance, it has better effectiveness and high efficiency.展开更多
To improve the ability and precisions of the fuzzy control,this thesis points out the adjusted fuzzy control method,realizes the precision of the fuzzy quantity, and reduces the number of the fuzzy control rules,so th...To improve the ability and precisions of the fuzzy control,this thesis points out the adjusted fuzzy control method,realizes the precision of the fuzzy quantity, and reduces the number of the fuzzy control rules,so that it can predigest the process of disigns and realize the methods without influencing the idiocratic control,which are on the base of the domain flexing.展开更多
The functional relationship of approximation accuracy and number of fuzzy sets is used to find the rational balance point between the control accuracy and the control cost of fuzzy systems. This approach efficiently e...The functional relationship of approximation accuracy and number of fuzzy sets is used to find the rational balance point between the control accuracy and the control cost of fuzzy systems. This approach efficiently eliminates the drawback of rapid control cost increase caused by blind increase of fuzzy set number in practical engineering. The sufficient conditions for TS fuzzy systems as universal approximators are derived. A special T-S fuzzy system that satisfied these conditions is analyzed, and the simulation results show that when the number of fuzzy sets is increased moderately, the model parameters' training epochs can be effectually decreased while the model accuracy improved significantly. A practical welding power source controlled by a T-S fuzzy system is developed with satisfactory experimental results.展开更多
This paper firstly proposes a new support vector machine regression (SVR) with a robust loss function, and designs a gradient based algorithm for implementation of the SVR, then uses the SVR to extract fuzzy rules and...This paper firstly proposes a new support vector machine regression (SVR) with a robust loss function, and designs a gradient based algorithm for implementation of the SVR, then uses the SVR to extract fuzzy rules and designs fuzzy rule-based system. Simulations show that fuzzy rule-based system technique based on robust SVR achieves superior performance to the conventional fuzzy inference method, the proposed method provides satisfactory performance with excellent approximation and generalization property than the existing algorithm.展开更多
This paper introduces a new methodology for the damage assessment of existing-transmission structures using six layers, zero order Sugeno model. The model is a hybrid fuzzy-neural system that combines the power of neu...This paper introduces a new methodology for the damage assessment of existing-transmission structures using six layers, zero order Sugeno model. The model is a hybrid fuzzy-neural system that combines the power of neural networks and fuzzy systems. It is a learning expert system that finds the parameters of the fuzzy sets and fuzzy rules by exploiting approximation techniques from neural networks. The condition ratings of the structural components are determined based on visually observed deterioration-symptoms and the severity of those symptoms. A supervised learning process using training data and expert opinions is used to develop the expert system rules and determine the ratings of the structural components. For the learning from training data, the model uses a combination of least-square estimator and gradient descent method. A sequential least square algorithm is used to determine the weighting factors that minimized the errors. A test case is given to illustrate the power of the proposed fuzzy-neural system. It is concluded that the Sugeno model's ability to tune the parameters based on the training data makes it superior to the rules produced by an expert in the conventional fuzzy logic systems.展开更多
This paper presents the construction of an active suspension control of a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model to be treated here can be approximately described...This paper presents the construction of an active suspension control of a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model to be treated here can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is designed as the fuzzy control inferred by using single input rule modules fuzzy reasoning, and the active control force is released by actuating a pneumatic actuator. The excitation from the road profile is estimated by using a disturbance observer, and the estimate is denoted as one of the variables in the precondition part of the fuzzy control rules. A compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension system improves much the vibration suppression of the car model. Key words One-wheel car model - Active suspension system - Single input rule modules fuzzy reasoning - Pneumatic actuator - Disturbance observer Document code A CLC number TH16展开更多
An artificial-intelligence based decision-making protocol is developed for tight gas sands to identify re-fracturing wells and used in case studies. The methodology is based on fuzzy logic to deal with imprecision and...An artificial-intelligence based decision-making protocol is developed for tight gas sands to identify re-fracturing wells and used in case studies. The methodology is based on fuzzy logic to deal with imprecision and subjectivity through mathematical representations of linguistic vagueness, and is a computing system based on the concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. Five indexes are used to characterize hydraulic fracture quality, reservoir characteristics, operational parameters, initial conditions, and production related to the selection of re-fracturing well, and each index includes 3 related parameters. The value of each index/parameter is grouped into three categories that are low, medium, and high. For each category, a trapezoidal membership function all related rules are defined. The related parameters of an index are input into the rule-based fuzzy-inference system to output value of the index. Another fuzzy-inference system is built with the reservoir index, operational index, initial condition index and production index as input parameters and re-fracturing potential index as output parameter to screen out re-fracturing wells. This approach was successfully validated using published data.展开更多
This paper presents a two-agent framework to build a natural langua g e query interface for IC information system, focusing more on scope queries in a single English sentence. The first agent, parsing agent, syntact...This paper presents a two-agent framework to build a natural langua g e query interface for IC information system, focusing more on scope queries in a single English sentence. The first agent, parsing agent, syntactically p rocesses and semantically interprets natural language sentence to construct a fu zzy structured query language (SQL) statement. The second agent, defuzzif ying agent, defuzzifies the imprecise part of the fuzzy SQL statement into its e quivalent executable precise SQL statement based on fuzzy rules. The first agent can also actively ask the user some necessary questions when it manages to disa mbiguate the vague retrieval requirements. The adaptive defuzzification approach employed in the defuzzifying agent is discussed in detail. A prototype interface has been implemented to demonstrate the effectiveness.展开更多
基金funded by the National Science Foundation of China(62006068)Hebei Natural Science Foundation(A2021402008),Natural Science Foundation of Scientific Research Project of Higher Education in Hebei Province(ZD2020185,QN2020188)333 Talent Supported Project of Hebei Province(C20221026).
文摘Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship between data attributes.However,the creation of fuzzy rules typically depends on expert knowledge,which may not fully leverage the label information in training data and may be subjective.To address this issue,a novel fuzzy rule oversampling approach is developed based on the learning vector quantization(LVQ)algorithm.In this method,the label information of the training data is utilized to determine the antecedent part of If-Then fuzzy rules by dynamically dividing attribute intervals using LVQ.Subsequently,fuzzy rules are generated and adjusted to calculate rule weights.The number of new samples to be synthesized for each rule is then computed,and samples from the minority class are synthesized based on the newly generated fuzzy rules.This results in the establishment of a fuzzy rule oversampling method based on LVQ.To evaluate the effectiveness of this method,comparative experiments are conducted on 12 publicly available imbalance datasets with five other sampling techniques in combination with the support function machine.The experimental results demonstrate that the proposed method can significantly enhance the classification algorithm across seven performance indicators,including a boost of 2.15%to 12.34%in Accuracy,6.11%to 27.06%in G-mean,and 4.69%to 18.78%in AUC.These show that the proposed method is capable of more efficiently improving the classification performance of imbalanced data.
文摘As per World Health Organization report which was released in the year of 2019,Diabetes claimed the lives of approximately 1.5 million individuals globally in 2019 and around 450 million people are affected by diabetes all over the world.Hence it is inferred that diabetes is rampant across the world with the majority of the world population being affected by it.Among the diabetics,it can be observed that a large number of people had failed to identify their disease in the initial stage itself and hence the disease level moved from Type-1 to Type-2.To avoid this situation,we propose a new fuzzy logic based neural classifier for early detection of diabetes.A set of new neuro-fuzzy rules is introduced with time constraints that are applied for thefirst level classification.These levels are further refined by using the Fuzzy Cognitive Maps(FCM)with time intervals for making thefinal decision over the classification process.The main objective of this proposed model is to detect the diabetes level based on the time.Also,the set of neuro-fuzzy rules are used for selecting the most contributing values over the decision-making process in diabetes prediction.The proposed model proved its efficiency in performance after experiments conducted not only from the repository but also by using the standard diabetic detection models that are available in the market.
基金Project(60574030) supported by the National Natural Science Foundation of ChinaKey Project(60634020) supported by the National Natural Science Foundation of China
文摘There are defects such as the low convergence rate and premature phenomenon on the performance of simple genetic algorithms (SGA) as the values of crossover probability (Pc) and mutation probability (Pro) are fixed. To solve the problems, the fuzzy control method and the genetic algorithms were systematically integrated to create a kind of improved fuzzy adaptive genetic algorithm (FAGA) based on the auto-regulating fuzzy rules (ARFR-FAGA). By using the fuzzy control method, the values of Pc and Pm were adjusted according to the evolutional process, and the fuzzy rules were optimized by another genetic algorithm. Experimental results in solving the function optimization problems demonstrate that the convergence rate and solution quality of ARFR-FAGA exceed those of SGA, AGA and fuzzy adaptive genetic algorithm based on expertise (EFAGA) obviously in the global search.
文摘Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper describes an improved SPSA algorithm, which entails fuzzy adaptive gain sequences, gradient smoothing, and a step rejection procedure to enhance convergence and stability. The proposed fuzzy adaptive simultaneous perturbation approximation (FASPA) algorithm is particularly well suited to problems involving a large number of parameters such as those encountered in nonlinear system identification using neural networks (NNs). Accordingly, a multilayer perceptron (MLP) network with popular training algorithms was used to predicate the system response. We found that an MLP trained by FASPSA had the desired accuracy that was comparable to results obtained by traditional system identification algorithms. Simulation results for typical nonlinear systems demonstrate that the proposed NN architecture trained with FASPSA yields improved system identification as measured by reduced time of convergence and a smaller identification error.
文摘By the analysis of CORBA technology, distributed technology, multi agent, fuzzy cluster, OA system, expert system and decision support technology, a distributed OA expert system model based on fuzzy rules (DOAES) is proposed. In DOAES, the knowledge and experience of decision makers are processed and transferred into the knowledge base. So the system has the adaptive ability and re study function and the decision results are more scientific and more objective. The DOAES is successfully applied in the management system of invest promotion.
基金Project(50374079) supported bythe National Natural Science Foundation of China project(2002cB312200) supported bythe State Key Fundamental Research and Development Programof China
文摘A fast generation method of fuzzy rules for flux optimization decision-making was proposed in order to extract the linguistic knowledge from numerical data in the process of matter converting. The fuzzy if-then rules with consequent real number were extracted from numerical data, and a linguistic representation method for deriving linguistic rules from fuzzy if-then rules with consequent real numbers was developed. The linguistic representation consisted of The simulat two linguistic variables with the degree of certainty and the storage structure of rule base was described. on results show that the method involves neither the time-consuming iterative learning procedure nor the complicated rule generation mechanisms, and can approximate complex system. The method was applied to determine the flux amount of copper converting furnace in the process of matter converting. The real result shows that the mass fraction of Cu in slag is reduced by 0.5 %.
文摘Breast cancer remains a significant global health challenge, necessitating effective early detection and prognosis to enhance patient outcomes. Current diagnostic methods, including mammography and MRI, suffer from limitations such as uncertainty and imprecise data, leading to late-stage diagnoses. To address this, various expert systems have been developed, but many rely on type-1 fuzzy logic and lack mobile-based applications for data collection and feedback to healthcare practitioners. This research investigates the development of an Enhanced Mobile-based Fuzzy Expert system (EMFES) for breast cancer pre-growth prognosis. The study explores the use of type-2 fuzzy logic to enhance accuracy and model uncertainty effectively. Additionally, it evaluates the advantages of employing the python programming language over java for implementation and considers specific risk factors for data collection. The research aims to dynamically generate fuzzy rules, adapting to evolving breast cancer research and patient data. Key research questions focus on the comparative effectiveness of type-2 fuzzy logic, the handling of uncertainty and imprecise data, the integration of mobile-based features, the choice of programming language, and the creation of dynamic fuzzy rules. Furthermore, the study examines the differences between the Mamdani Inference System and the Sugeno Fuzzy Inference method and explores challenges and opportunities in deploying the EMFES on mobile devices. The research identifies a critical gap in existing breast cancer diagnostic systems, emphasizing the need for a comprehensive, mobile-enabled, and adaptable solution by developing an EMFES that leverages Type-2 fuzzy logic, the Sugeno Inference Algorithm, Python Programming, and dynamic fuzzy rule generation. This study seeks to enhance early breast cancer detection and ultimately reduce breast cancer-related mortality.
基金The National Natural Science Foundation of China(No.60473045)the Technology Research Project of Hebei Province(No.05213573)the Research Plan of Education Office of Hebei Province(No.2004406)
文摘To deal with the problem that arises when the conventional fuzzy class-association method applies repetitive scans of the classifier to classify new texts,which has low efficiency, a new approach based on the FCR-tree(fuzzy classification rules tree)for text categorization is proposed.The compactness of the FCR-tree saves significant space in storing a large set of rules when there are many repeated words in the rules.In comparison with classification rules,the fuzzy classification rules contain not only words,but also the fuzzy sets corresponding to the frequencies of words appearing in texts.Therefore,the construction of an FCR-tree and its structure are different from a CR-tree.To debase the difficulty of FCR-tree construction and rules retrieval,more k-FCR-trees are built.When classifying a new text,it is not necessary to search the paths of the sub-trees led by those words not appearing in this text,thus reducing the number of traveling rules.Experimental results show that the proposed approach obviously outperforms the conventional method in efficiency.
基金the Shanghai Sciences and Technology Committee under Grant No.08DZ1202500 (No.08DZ1202502)the Young Faculty Research Grant of Shanghai Maritime Universitythe Shanghai Young Faculty Research Grant (No.shs08032)
文摘This paper proposes a support vector machine-based fuzzy rules acquisition system(SVM-FRAS) .The character of SVM in extracting support vector provides a mechanism to extract fuzzy If-Then rules from the training data set.We construct the fuzzy inference system using fuzzy basis function(FBF) .The gradient technique is used to tune the fuzzy rules and the inference system.Theoretical analysis and comparative tests are performed comparing with other fuzzy systems.Experimental results show the SVM-FRAS model possesses good generalization capability as well as high comprehensibility.
基金The authors would like to express their gratitude to the ministry of education and the deanship of scientific research-Najran University-Kingdom of Saudi Arabia for their Financial and Technical support under code number(code NU/-/SERC/10/643).
文摘This research proposes a machine learning approach using fuzzy logic to build an information retrieval system for the next crop rotation.In case-based reasoning systems,case representation is critical,and thus,researchers have thoroughly investigated textual,attribute-value pair,and ontological representations.As big databases result in slow case retrieval,this research suggests a fast case retrieval strategy based on an associated representation,so that,cases are interrelated in both either similar or dissimilar cases.As soon as a new case is recorded,it is compared to prior data to find a relative match.The proposed method is worked on the number of cases and retrieval accuracy between the related case representation and conventional approaches.Hierarchical Long Short-Term Memory(HLSTM)is used to evaluate the efficiency,similarity of the models,and fuzzy rules are applied to predict the environmental condition and soil quality during a particular time of the year.Based on the results,the proposed approaches allows for rapid case retrieval with high accuracy.
基金supported by the National Key R&D Program of China,Grant No.2018YFA0306703 and J2019-V-0001-0092.
文摘Estimating the intention of space objects plays an important role in air-craft design,aviation safety,military and otherfields,and is an important refer-ence basis for air situation analysis and command decision-making.This paper studies an intention estimation method based on fuzzy theory,combining prob-ability to calculate the intention between two objects.This method takes a space object as the origin of coordinates,observes the target’s distance,speed,relative heading angle,altitude difference,steering trend and etc.,then introduces the spe-cific calculation methods of these parameters.Through calculation,values are input into the fuzzy inference model,andfinally the action intention of the target is obtained through the fuzzy rule table and historical weighted probability.Ver-ified by simulation experiment,the target intention inferred by this method is roughly the same as the actual behavior of the target,which proves that the meth-od for identifying the target intention is effective.
基金supported by the Fundamental Research Funds for the Central Universities under Grants No.ZYGX2014J051 and No.ZYGX2014J066Science and Technology Projects in Sichuan Province under Grants No.2015JY0178,No.2016FZ0002,No.2014GZ0109,No.2015KZ002 and No.2015JY0030China Postdoctoral Science Foundation under Grant No.2015M572464
文摘At present, most of the association rules algorithms are based on the Boolean attribute and single-level association rules mining. But data of the real world has various types, the multi-level and quantitative attributes are got more and more attention. And the most important step is to mine frequent sets. In this paper, we propose an algorithm that is called fuzzy multiple-level association (FMA) rules to mine frequent sets. It is based on the improved Eclat algorithm that is different to many researchers’ proposed algorithms thatused the Apriori algorithm. We analyze quantitative data’s frequent sets by using the fuzzy theory, dividing the hierarchy of concept and softening the boundary of attributes’ values and frequency. In this paper, we use the vertical-style data and the improved Eclat algorithm to describe the proposed method, we use this algorithm to analyze the data of Beijing logistics route. Experiments show that the algorithm has a good performance, it has better effectiveness and high efficiency.
文摘To improve the ability and precisions of the fuzzy control,this thesis points out the adjusted fuzzy control method,realizes the precision of the fuzzy quantity, and reduces the number of the fuzzy control rules,so that it can predigest the process of disigns and realize the methods without influencing the idiocratic control,which are on the base of the domain flexing.
基金supported by the National Natural Science Foundation of China(7156102671571123)+1 种基金the China Postdoctoral Science Foundation(2015M5707922016T90864)
基金This work was supported by the National Natural Science Foundation of China (No 50575074)the Scientific and Technological Project of Guangdong (No 2003A1040310)
文摘The functional relationship of approximation accuracy and number of fuzzy sets is used to find the rational balance point between the control accuracy and the control cost of fuzzy systems. This approach efficiently eliminates the drawback of rapid control cost increase caused by blind increase of fuzzy set number in practical engineering. The sufficient conditions for TS fuzzy systems as universal approximators are derived. A special T-S fuzzy system that satisfied these conditions is analyzed, and the simulation results show that when the number of fuzzy sets is increased moderately, the model parameters' training epochs can be effectually decreased while the model accuracy improved significantly. A practical welding power source controlled by a T-S fuzzy system is developed with satisfactory experimental results.
基金Supported by Zhejiang Province Nature Science Fund (No.Y106259)
文摘This paper firstly proposes a new support vector machine regression (SVR) with a robust loss function, and designs a gradient based algorithm for implementation of the SVR, then uses the SVR to extract fuzzy rules and designs fuzzy rule-based system. Simulations show that fuzzy rule-based system technique based on robust SVR achieves superior performance to the conventional fuzzy inference method, the proposed method provides satisfactory performance with excellent approximation and generalization property than the existing algorithm.
文摘This paper introduces a new methodology for the damage assessment of existing-transmission structures using six layers, zero order Sugeno model. The model is a hybrid fuzzy-neural system that combines the power of neural networks and fuzzy systems. It is a learning expert system that finds the parameters of the fuzzy sets and fuzzy rules by exploiting approximation techniques from neural networks. The condition ratings of the structural components are determined based on visually observed deterioration-symptoms and the severity of those symptoms. A supervised learning process using training data and expert opinions is used to develop the expert system rules and determine the ratings of the structural components. For the learning from training data, the model uses a combination of least-square estimator and gradient descent method. A sequential least square algorithm is used to determine the weighting factors that minimized the errors. A test case is given to illustrate the power of the proposed fuzzy-neural system. It is concluded that the Sugeno model's ability to tune the parameters based on the training data makes it superior to the rules produced by an expert in the conventional fuzzy logic systems.
文摘This paper presents the construction of an active suspension control of a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model to be treated here can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is designed as the fuzzy control inferred by using single input rule modules fuzzy reasoning, and the active control force is released by actuating a pneumatic actuator. The excitation from the road profile is estimated by using a disturbance observer, and the estimate is denoted as one of the variables in the precondition part of the fuzzy control rules. A compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension system improves much the vibration suppression of the car model. Key words One-wheel car model - Active suspension system - Single input rule modules fuzzy reasoning - Pneumatic actuator - Disturbance observer Document code A CLC number TH16
文摘An artificial-intelligence based decision-making protocol is developed for tight gas sands to identify re-fracturing wells and used in case studies. The methodology is based on fuzzy logic to deal with imprecision and subjectivity through mathematical representations of linguistic vagueness, and is a computing system based on the concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. Five indexes are used to characterize hydraulic fracture quality, reservoir characteristics, operational parameters, initial conditions, and production related to the selection of re-fracturing well, and each index includes 3 related parameters. The value of each index/parameter is grouped into three categories that are low, medium, and high. For each category, a trapezoidal membership function all related rules are defined. The related parameters of an index are input into the rule-based fuzzy-inference system to output value of the index. Another fuzzy-inference system is built with the reservoir index, operational index, initial condition index and production index as input parameters and re-fracturing potential index as output parameter to screen out re-fracturing wells. This approach was successfully validated using published data.
文摘This paper presents a two-agent framework to build a natural langua g e query interface for IC information system, focusing more on scope queries in a single English sentence. The first agent, parsing agent, syntactically p rocesses and semantically interprets natural language sentence to construct a fu zzy structured query language (SQL) statement. The second agent, defuzzif ying agent, defuzzifies the imprecise part of the fuzzy SQL statement into its e quivalent executable precise SQL statement based on fuzzy rules. The first agent can also actively ask the user some necessary questions when it manages to disa mbiguate the vague retrieval requirements. The adaptive defuzzification approach employed in the defuzzifying agent is discussed in detail. A prototype interface has been implemented to demonstrate the effectiveness.