In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transfo...In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology.展开更多
In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new se...In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new self-tuning type-2 fuzzy neural network calculates and updates the control system parameters with a fast mechanism.According to the dynamic changes of the system,in addition to the parameters of the SMC,the parameters of the type-2 fuzzy neural network are also updated online.The conditions for guaranteeing the convergence and stability of the control system are provided.In the simulation part,in order to test the proposed method,several uncertain models and load torque have been applied.Also,the results have been compared to the SMC based on the type-1 fuzzy system,the traditional SMC,and the PI controller.The average RMSE in different scenarios,for type-2 fuzzy SMC,is 0.0311,for type-1 fuzzy SMC is 0.0497,for traditional SMC is 0.0778,and finally for PI controller is 0.0997.展开更多
In considering the characteristic of a rudder,the maneuvers of a ship were described by an unmatched uncertain nonlinear mathematic model with unknown virtual control coefficient and parameter uncertainties.In order t...In considering the characteristic of a rudder,the maneuvers of a ship were described by an unmatched uncertain nonlinear mathematic model with unknown virtual control coefficient and parameter uncertainties.In order to solve the uncertainties in the ship heading control,specifically the controller singular and paramount re-estimation problem,a new multiple sliding-mode adaptive fuzzy control algorithm was proposed by combining Nussbaum gain technology,the approximation property of fuzzy logic systems,and a multiple sliding-mode control algorithm.Based on the Lyapunov function,it was proven in theory that the controller made all signals in the nonlinear system of unmatched uncertain ship motion uniformly bounded,with tracking errors converging to zero.Simulation results show that the demonstrated controller design can track a desired course fast and accurately.It also exhibits strong robustness peculiarity in relation to system uncertainties and disturbances.展开更多
For enhancing the control effectiveness,we firstly design a fuzzy logic based sliding mode controller(FSMC)for nonlinear crane systems.On basis of overhead crane dynamic characteristic,the sliding mode function with r...For enhancing the control effectiveness,we firstly design a fuzzy logic based sliding mode controller(FSMC)for nonlinear crane systems.On basis of overhead crane dynamic characteristic,the sliding mode function with regard to trolley position and payload angle.Additionally,in order to eliminate the chattering problem of sliding mode control,the fuzzy logic theory is adopted to soften the control performance.Moreover,aiming at the FSMC parameter setting problem,a DE algorithm based optimization scheme is proposed for enhancing the control performance.Finally,by implementing the computer simulation,the DE based FSMC can effectively tackle the overhead crane sway problem and avoid unexpected accident greatly.展开更多
A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Co...A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Combing the traits of SMC and CSTR,three fuzzy rules can meet the requirements of controlled system.The self-tuning switch control law which can drive the state variables to the sliding surface as soon as possible is designed to ensure the robustness of uncertain fuzzy system.Lyapunov equation is applied to proving the stability of the sliding surface.The simulations show that the proposed approach can achieve desired performance with less chattering problem.展开更多
According to a class of nonlinear SISO discrete systems, the fiizzy sliding mode control problem is considered. Based on Takagi-Sugeno fuzzy model method, a fuzzy model is designed to describe the local dynamic perfor...According to a class of nonlinear SISO discrete systems, the fiizzy sliding mode control problem is considered. Based on Takagi-Sugeno fuzzy model method, a fuzzy model is designed to describe the local dynamic performance of the given nonlinear systems. By using the sliding mode control approach, the global controller is constructed by integrating all the local state controllers and the global supervisory sliding mode controller. The tracking problem can be easily dealt with by taking advantage of the combined controller,and the robustness performance is improved finally. A simulation example is given to show the effectiveness and feasibility of the method proposed.展开更多
This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generat...This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generator (SEIG). The aim of the developed control method is to automatically tune and optimize the scaling factors and the membership functions of the Fuzzy Logic Controllers (FLC) using Multi-Objective Genetic Algorithms (MOGA) and Multi-Objective Particle Swarm Optimization (MOPSO). Two Pulse Width Modulated voltage source PWM converters with a carrier-based Sinusoidal PWM modulation for both Generator- and Grid-side converters have been connected back to back between the generator terminals and utility grid via common DC link. The indirect vector control scheme is implemented to maintain balance between generated power and power supplied to the grid and maintain the terminal voltage of the generator and the DC bus voltage constant for variable rotor speed and load. Simulation study has been carried out using the MATLAB/Simulink environment to verify the robustness of the power electronics converters and the effectiveness of proposed control method under steady state and transient conditions and also machine parameters mismatches. The proposed control scheme has improved the voltage regulation and the transient performance of the wave energy scheme over a wide range of operating conditions.展开更多
To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditio...To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditions of sliding mode controller(SMC), and genetic algorithm (GA) is used to optimize scaling factor of the switching gain, thus the switch chattering of SMC can be alleviated. Moreover, global sliding mode is realized by designing an exponential dynamic sliding surface. Simulation and real-time application for flight simulator servo system with Lugre friction are given to indicate that the proposed controller can guarantee high robust performance all the time and can alleviate chattering phenomenon effectively.展开更多
The accurate control for the vehicle height and leveling adjustment system of an electronic air suspension(EAS) still is a challenging problem that has not been effectively solved in prior researches. This paper propo...The accurate control for the vehicle height and leveling adjustment system of an electronic air suspension(EAS) still is a challenging problem that has not been effectively solved in prior researches. This paper proposes a new adaptive controller to control the vehicle height and to adjust the roll and pitch angles of the vehicle body(leveling control) during the vehicle height adjustment procedures by an EAS system. A nonlinear mechanism model of the full?car vehicle height adjustment system is established to reflect the system dynamic behaviors and to derive the system optimal control law. To deal with the nonlinear characters in the vehicle height and leveling adjustment processes, the nonlinear system model is globally linearized through the state feedback method. On this basis, a fuzzy sliding mode controller(FSMC) is designed to improve the control accuracy of the vehicle height adjustment and to reduce the peak values of the roll and pitch angles of the vehicle body. To verify the effectiveness of the proposed control method more accurately, the full?car EAS system model programmed using AMESim is also given. Then, the co?simulation study of the FSMC performance can be conducted. Finally, actual vehicle tests are performed with a city bus, and the test results illustrate that the vehicle height adjustment performance is effectively guaranteed by the FSMC, and the peak values of the roll and pitch angles of the vehicle body during the vehicle height adjustment procedures are also reduced significantly. This research proposes an effective control methodology for the vehicle height and leveling adjustment system of an EAS, which provides a favorable control performance for the system.展开更多
A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic ...A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic PMSM model is transformed into the Brunovsky canonical form, which is more suitable for the controller design. Based on the fuzzy control theory, a fuzzy extended state observer is developed to estimate the unknown states and uncertainties, and the restriction that all the system states should be completely measurable is avoided. Thereafter, a full-order sliding mode controller is designed to ensure the convergence of all system states without any chattering problem. Comparative simulations show the effectiveness and superior performance of the proposed control method.展开更多
An adaptive fuzzy sliding mode control (AFSMC) ap- proach is proposed for a robotic airship. First, the mathematical model of an airship is derived in the form of a nonlinear control system. Second, an AFSMC approac...An adaptive fuzzy sliding mode control (AFSMC) ap- proach is proposed for a robotic airship. First, the mathematical model of an airship is derived in the form of a nonlinear control system. Second, an AFSMC approach is proposed to design the attitude control system of airship, and the global stability of the closed-loop system is proved by using the Lyapunov stability theorem. Finally, simulation results verify the effectiveness and robustness of the proposed control approach in the presence of model uncertainties and external disturbances.展开更多
Aiming at a class of systems under parameter perturbations and unknown external disturbances, a method of fuzzy robust sliding mode control was proposed. Firstly, an integral sliding mode surface containing state feed...Aiming at a class of systems under parameter perturbations and unknown external disturbances, a method of fuzzy robust sliding mode control was proposed. Firstly, an integral sliding mode surface containing state feedback item was designed based on robust H∞ control theory. The robust state feedback control was utilized to substitute for the equivalent control of the traditional sliding mode control. Thus the robustness of systems sliding mode motion was improved even the initial states were unknown. Furthermore, when the upper bound of disturbance was unknown, the switching control logic was difficult to design, and the drawbacks of chattering in sliding mode control should also be considered simultaneously. To solve the above-mentioned problems, the fuzzy nonlinear method was applied to approximate the switching control term. Based on the Lyapunov stability theory, the parameter adaptive law which could guarantee the system stability was devised. The proposed control strategy could reduce the system chattering effectively. And the control input would not switch sharply, which improved the practicality of the sliding mode controller. Finally, simulation was conducted on system with parameter perturbations and unknown external disturbances. The result shows that the proposed method could enhance the approaching motion performance effectively. The chattering phenomenon is weakened, and the system possesses stronger robustness against parameter perturbations and external disturbances.展开更多
In this paper, a fuzzy sliding mode active disturbance rejection control(FSMADRC) scheme is proposed for an autonomous underwater vehicle-manipulator system(AUVMS) with a two-link and three-joint manipulator. First, t...In this paper, a fuzzy sliding mode active disturbance rejection control(FSMADRC) scheme is proposed for an autonomous underwater vehicle-manipulator system(AUVMS) with a two-link and three-joint manipulator. First, the AUVMS is separated into nine subsystems, and the combined effects of dynamic uncertainties, hydrodynamic force, unknown disturbances, and nonlinear coupling terms on each subsystem are lumped into a single total disturbance. Next, a linear extended state observer(LESO) is presented to estimate the total disturbance. Then, a sliding mode active disturbance rejection control(SMADRC) scheme is proposed to enhance the robustness of the control system. The stability of the SMADRC and the estimation errors of the LESO are analyzed. Because it is difficult to simultaneously adjust several parameters for a LESO-based SMADRC scheme, a fuzzy logic control(FLC) scheme is used to formulate the FSMADRC to determine the appropriate parameters adaptively for practical applications. Finally, two AUVMS tasks are illustrated to test the trajectory tracking performance of the closed-loop system and its ability to reject and attenuate the total disturbance. The simulation results show that the proposed FSMADRC scheme achieves better performance and consume less energy than conventional PID and FLC techniques.展开更多
An adaptive fuzzy sliding mode strategy is developed for the generalized projective synchronization of a fractional- order chaotic system, where the slave system is not necessarily known in advance. Based on the desig...An adaptive fuzzy sliding mode strategy is developed for the generalized projective synchronization of a fractional- order chaotic system, where the slave system is not necessarily known in advance. Based on the designed adaptive update laws and the linear feedback method, the adaptive fuzzy sliding controllers are proposed via the fuzzy design, and the strength of the designed controllers can he adaptively adjusted according to the external disturbances. Based on the Lya- punov stability theorem, the stability and the robustness of the controlled system are proved theoretically. Numerical simu- lations further support the theoretical results of the paper and demonstrate the efficiency of the proposed method. Moreover, it is revealed that the proposed method allows us to manipulate arbitrarily the response dynamics of the slave system by adjusting the desired scaling factor λi and the desired translating factor ηi, which may be used in a channel-independent chaotic secure communication.展开更多
This article addresses the finite-time boundedness(FTB)problem for nonlinear descriptor systems.Firstly,the nonlinear descriptor system is represented by the Takagi-Sugeno(T-S)model,where fuzzy representation is assum...This article addresses the finite-time boundedness(FTB)problem for nonlinear descriptor systems.Firstly,the nonlinear descriptor system is represented by the Takagi-Sugeno(T-S)model,where fuzzy representation is assumed to be appearing not only in both the state and input matrices but also in the derivative matrix.By using a descriptor redundancy approach,the fuzzy representation in the derivative matrix is reformulated into a linear one.Then,we introduce a fuzzy sliding mode control(FSMC)law,which ensures the finite-time boundedness(FTB)of closed-loop fuzzy control systems over the reaching phase and sliding motion phase.Moreover,by further employing the descriptor redundancy representation,the sufficient condition for designing FSMC law,which ensures the FTB of the closed-loop control systems over the entire finite-time interval,is derived in terms of linear matrix inequalities(LMIs).Finally,a simulation study with control of a photovoltaic(PV)nonlinear system is given to show the effectiveness of the proposed method.展开更多
In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear un...In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear uncertain systems. Combining reaching law approach and fuzzy universal approximation theorem, the proposed design procedure combines the advantages of fuzzy logic control, adaptive control and sliding mode control. The stability of the control systems is proved in the sense of the Lyapunov second stability theorem. Two simulation studies are presented to demonstrate the effectiveness of our new hybrid control algorithm.展开更多
In this paper, a novel fuzzy sliding mode control(FSMC) guidance law with terminal constraints of miss distance, impact angle and acceleration is presented for a constant speed missile against the stationary or slow...In this paper, a novel fuzzy sliding mode control(FSMC) guidance law with terminal constraints of miss distance, impact angle and acceleration is presented for a constant speed missile against the stationary or slowly moving target. The proposed guidance law combines the sliding mode control algorithm with a fuzzy logic control scheme for the lag-free system and the first-order lag system. Through using Lyapunov stability theory, we prove the sliding surface converges to zero in finite time. Furthermore, considering the uncertain information and system disturbances, the guidance gains are on-line optimized by fuzzy logic technique. Numerical simulations are performed to demonstrate the performance of the FSMC guidance law and the results illustrate the validity and effectiveness of the proposed guidance law.展开更多
Aimed at the problems of large torque ripple,obvious chattering and poor estimation accuracy of back-EMFs in traditional permanent magnet synchronous motor(PMSM)control system with sliding mode observer(SMO),an improv...Aimed at the problems of large torque ripple,obvious chattering and poor estimation accuracy of back-EMFs in traditional permanent magnet synchronous motor(PMSM)control system with sliding mode observer(SMO),an improved control strategy for PMSM based on a fuzzy sliding mode control(FSMC)and a two-stage filter sliding mode observer(TFSMO)is proposed.Firstly,a novel reaching law(NRL)used in the speed loop based on hyperbolic sine function is studied,and fuzzy control ideal is shown to achieve the self-turning of the parameter for the reaching law,thus a fuzzy integral sliding mode controller based on the novel reaching law is designed in speed loop.Then the suppression effect upon chattering caused by the novel reaching law is analyzed strictly by discrete equation.Secondly,in order to restrain the high frequency components and measurement noise in back-EMFs,a two-stage filter structure based on a variable cut-off frequency low-pass filter(VCF-LPF)and a modified back-EMF observer(MBO)is conceived,and the rotor position is compensated reasonably.As a result,a TFSMO is designed.The stability of the proposed control strategy is proved by Lyapunov Criterion.The simulation and experiment results show that,compared with traditional SMO,the controller suggested above can obtain very nice system respond when the motor starts and is subjected to external disturbances,and effectively improve the problems about torque ripple,chattering and the estimation accuracy of back-EMF.展开更多
A novel fuzzy terminal sliding mode control (FTSMC) scheme is proposed for position tracking of a class of second-order nonlinear uncertain system. In the proposed scheme, we integrate input-output linearization tec...A novel fuzzy terminal sliding mode control (FTSMC) scheme is proposed for position tracking of a class of second-order nonlinear uncertain system. In the proposed scheme, we integrate input-output linearization technique to cancel the nonlinearities. By using a function-augmented sliding hyperplane, it is guaranteed that the output tracking error converges to zero in finite time which can be set arbitrarily. The proposed scheme eliminates reaching phase problem, so that the closed-loop system always shows invariance property to parameter uncertainties. Fuzzy logic systems are used to approximate the unknown system functions and switch item. Robust adaptive law is proposed to reduce approximation errors between true nonlinear functions and fuzzy systems, thus chattering phenomenon can be eliminated. Stability of the proposed control scheme is proved and the scheme is applied to an inverted pendulum system. Simulation studies are provided to confirm performance and effectiveness of the proposed control approach.展开更多
The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parame...The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parametric variations. Among the most evoked control strategies adopted in this field to overcome these drawbacks presented in classical drive, it is worth mentioning the use of the second order sliding mode control(SOSMC) based on the super twisting algorithm(STA) combined with the fuzzy logic control(FSOSMC). In order to realize the optimal control performance, the FSOSMC parameters are adjusted using an optimization algorithm based on the genetic algorithm(GA). The performances of the envisaged control scheme, called G-FSOSMC, are investigated against G-SOSMC, G-PI and BBO-FSOSMC algorithms. The proposed controller scheme is efficient in reducing the torque and flux ripples, and successfully suppresses chattering. The effects of parametric uncertainties do not affect system performance.展开更多
文摘In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology.
基金This research is financially supported by the Ministry of Science and Technology of China(Grant No.2019YFE0112400)the Department of Science and Technology of Shandong Province(Grant No.2021CXGC011204).
文摘In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new self-tuning type-2 fuzzy neural network calculates and updates the control system parameters with a fast mechanism.According to the dynamic changes of the system,in addition to the parameters of the SMC,the parameters of the type-2 fuzzy neural network are also updated online.The conditions for guaranteeing the convergence and stability of the control system are provided.In the simulation part,in order to test the proposed method,several uncertain models and load torque have been applied.Also,the results have been compared to the SMC based on the type-1 fuzzy system,the traditional SMC,and the PI controller.The average RMSE in different scenarios,for type-2 fuzzy SMC,is 0.0311,for type-1 fuzzy SMC is 0.0497,for traditional SMC is 0.0778,and finally for PI controller is 0.0997.
基金Supported by the National Natural Science Foundation of China under Grant No.60974136
文摘In considering the characteristic of a rudder,the maneuvers of a ship were described by an unmatched uncertain nonlinear mathematic model with unknown virtual control coefficient and parameter uncertainties.In order to solve the uncertainties in the ship heading control,specifically the controller singular and paramount re-estimation problem,a new multiple sliding-mode adaptive fuzzy control algorithm was proposed by combining Nussbaum gain technology,the approximation property of fuzzy logic systems,and a multiple sliding-mode control algorithm.Based on the Lyapunov function,it was proven in theory that the controller made all signals in the nonlinear system of unmatched uncertain ship motion uniformly bounded,with tracking errors converging to zero.Simulation results show that the demonstrated controller design can track a desired course fast and accurately.It also exhibits strong robustness peculiarity in relation to system uncertainties and disturbances.
基金This work is supported by the Natural Science Foundation of Jiangsu Province(No.BK20160913)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.18KJB520035)+4 种基金the High Level Teacher Research Foundation of Nanjing University of Posts and Telecommunications(No.NY2016021)the Incubation Foundation of Nanjing University of Posts and Telecommunications(No.NY217055)Postdoctoral Foundation of Jiangsu Province(No.1701016A)Natural Science Foundation of China(No.61602259,No.61373135 and No.61672299)National Engineering Laboratory for Logistics Information Technology,YuanTong Express Co.LTD.
文摘For enhancing the control effectiveness,we firstly design a fuzzy logic based sliding mode controller(FSMC)for nonlinear crane systems.On basis of overhead crane dynamic characteristic,the sliding mode function with regard to trolley position and payload angle.Additionally,in order to eliminate the chattering problem of sliding mode control,the fuzzy logic theory is adopted to soften the control performance.Moreover,aiming at the FSMC parameter setting problem,a DE algorithm based optimization scheme is proposed for enhancing the control performance.Finally,by implementing the computer simulation,the DE based FSMC can effectively tackle the overhead crane sway problem and avoid unexpected accident greatly.
文摘A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Combing the traits of SMC and CSTR,three fuzzy rules can meet the requirements of controlled system.The self-tuning switch control law which can drive the state variables to the sliding surface as soon as possible is designed to ensure the robustness of uncertain fuzzy system.Lyapunov equation is applied to proving the stability of the sliding surface.The simulations show that the proposed approach can achieve desired performance with less chattering problem.
基金This work was supported by the National Natural Science Foundation of China (No, 60274099)the Doctoral Dissertation Foundation of Northeastern University (No. 200308).
文摘According to a class of nonlinear SISO discrete systems, the fiizzy sliding mode control problem is considered. Based on Takagi-Sugeno fuzzy model method, a fuzzy model is designed to describe the local dynamic performance of the given nonlinear systems. By using the sliding mode control approach, the global controller is constructed by integrating all the local state controllers and the global supervisory sliding mode controller. The tracking problem can be easily dealt with by taking advantage of the combined controller,and the robustness performance is improved finally. A simulation example is given to show the effectiveness and feasibility of the method proposed.
文摘This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generator (SEIG). The aim of the developed control method is to automatically tune and optimize the scaling factors and the membership functions of the Fuzzy Logic Controllers (FLC) using Multi-Objective Genetic Algorithms (MOGA) and Multi-Objective Particle Swarm Optimization (MOPSO). Two Pulse Width Modulated voltage source PWM converters with a carrier-based Sinusoidal PWM modulation for both Generator- and Grid-side converters have been connected back to back between the generator terminals and utility grid via common DC link. The indirect vector control scheme is implemented to maintain balance between generated power and power supplied to the grid and maintain the terminal voltage of the generator and the DC bus voltage constant for variable rotor speed and load. Simulation study has been carried out using the MATLAB/Simulink environment to verify the robustness of the power electronics converters and the effectiveness of proposed control method under steady state and transient conditions and also machine parameters mismatches. The proposed control scheme has improved the voltage regulation and the transient performance of the wave energy scheme over a wide range of operating conditions.
基金This project is supported by Aeronautics Foundation of China (No. 00E51022)
文摘To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditions of sliding mode controller(SMC), and genetic algorithm (GA) is used to optimize scaling factor of the switching gain, thus the switch chattering of SMC can be alleviated. Moreover, global sliding mode is realized by designing an exponential dynamic sliding surface. Simulation and real-time application for flight simulator servo system with Lugre friction are given to indicate that the proposed controller can guarantee high robust performance all the time and can alleviate chattering phenomenon effectively.
基金Supported by National Natural Science Foundation of China(Grant Nos.51375212,61601203)Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions of China+1 种基金Key Research and Development Program of Jiangsu Province(BE2016149)Jiangsu Provincial Natural Science Foundation of China(BK20140555)
文摘The accurate control for the vehicle height and leveling adjustment system of an electronic air suspension(EAS) still is a challenging problem that has not been effectively solved in prior researches. This paper proposes a new adaptive controller to control the vehicle height and to adjust the roll and pitch angles of the vehicle body(leveling control) during the vehicle height adjustment procedures by an EAS system. A nonlinear mechanism model of the full?car vehicle height adjustment system is established to reflect the system dynamic behaviors and to derive the system optimal control law. To deal with the nonlinear characters in the vehicle height and leveling adjustment processes, the nonlinear system model is globally linearized through the state feedback method. On this basis, a fuzzy sliding mode controller(FSMC) is designed to improve the control accuracy of the vehicle height adjustment and to reduce the peak values of the roll and pitch angles of the vehicle body. To verify the effectiveness of the proposed control method more accurately, the full?car EAS system model programmed using AMESim is also given. Then, the co?simulation study of the FSMC performance can be conducted. Finally, actual vehicle tests are performed with a city bus, and the test results illustrate that the vehicle height adjustment performance is effectively guaranteed by the FSMC, and the peak values of the roll and pitch angles of the vehicle body during the vehicle height adjustment procedures are also reduced significantly. This research proposes an effective control methodology for the vehicle height and leveling adjustment system of an EAS, which provides a favorable control performance for the system.
基金supported by the National Natural Science Foundation of China(Grant Nos.61403343 and 61433003)the Scientific Research Foundation of Education Department of Zhejiang Province,China(Grant No.Y201329260)the Natural Science Foundation of Zhejiang University of Technology,China(Grant No.1301103053408)
文摘A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic PMSM model is transformed into the Brunovsky canonical form, which is more suitable for the controller design. Based on the fuzzy control theory, a fuzzy extended state observer is developed to estimate the unknown states and uncertainties, and the restriction that all the system states should be completely measurable is avoided. Thereafter, a full-order sliding mode controller is designed to ensure the convergence of all system states without any chattering problem. Comparative simulations show the effectiveness and superior performance of the proposed control method.
基金supported by the Hunan Provincial Innovation Foundation for Postgraduate (CX2011B005)the National University of Defense Technlolgy Innovation Foundation for Postgraduate (B110105)
文摘An adaptive fuzzy sliding mode control (AFSMC) ap- proach is proposed for a robotic airship. First, the mathematical model of an airship is derived in the form of a nonlinear control system. Second, an AFSMC approach is proposed to design the attitude control system of airship, and the global stability of the closed-loop system is proved by using the Lyapunov stability theorem. Finally, simulation results verify the effectiveness and robustness of the proposed control approach in the presence of model uncertainties and external disturbances.
基金Project(51476187)supported by the National Natural Science Foundation of China
文摘Aiming at a class of systems under parameter perturbations and unknown external disturbances, a method of fuzzy robust sliding mode control was proposed. Firstly, an integral sliding mode surface containing state feedback item was designed based on robust H∞ control theory. The robust state feedback control was utilized to substitute for the equivalent control of the traditional sliding mode control. Thus the robustness of systems sliding mode motion was improved even the initial states were unknown. Furthermore, when the upper bound of disturbance was unknown, the switching control logic was difficult to design, and the drawbacks of chattering in sliding mode control should also be considered simultaneously. To solve the above-mentioned problems, the fuzzy nonlinear method was applied to approximate the switching control term. Based on the Lyapunov stability theory, the parameter adaptive law which could guarantee the system stability was devised. The proposed control strategy could reduce the system chattering effectively. And the control input would not switch sharply, which improved the practicality of the sliding mode controller. Finally, simulation was conducted on system with parameter perturbations and unknown external disturbances. The result shows that the proposed method could enhance the approaching motion performance effectively. The chattering phenomenon is weakened, and the system possesses stronger robustness against parameter perturbations and external disturbances.
基金supported in part by the Fundamental Research Funds for the Central Universities (No. 201964012)the Open Foundation of Henan Key Laboratory of Underwater Intelligent Equipment (No. KL02A1802)+1 种基金the National Natural Science Foundations of China (Nos. 61603361 and 51979256)the Shandong Provincial Natural Science Foundation (No. ZR2017MEE015)。
文摘In this paper, a fuzzy sliding mode active disturbance rejection control(FSMADRC) scheme is proposed for an autonomous underwater vehicle-manipulator system(AUVMS) with a two-link and three-joint manipulator. First, the AUVMS is separated into nine subsystems, and the combined effects of dynamic uncertainties, hydrodynamic force, unknown disturbances, and nonlinear coupling terms on each subsystem are lumped into a single total disturbance. Next, a linear extended state observer(LESO) is presented to estimate the total disturbance. Then, a sliding mode active disturbance rejection control(SMADRC) scheme is proposed to enhance the robustness of the control system. The stability of the SMADRC and the estimation errors of the LESO are analyzed. Because it is difficult to simultaneously adjust several parameters for a LESO-based SMADRC scheme, a fuzzy logic control(FLC) scheme is used to formulate the FSMADRC to determine the appropriate parameters adaptively for practical applications. Finally, two AUVMS tasks are illustrated to test the trajectory tracking performance of the closed-loop system and its ability to reject and attenuate the total disturbance. The simulation results show that the proposed FSMADRC scheme achieves better performance and consume less energy than conventional PID and FLC techniques.
基金Project supported by the Research Foundation of Education Bureau of Hebei Province,China(Grant No.QN2014096)
文摘An adaptive fuzzy sliding mode strategy is developed for the generalized projective synchronization of a fractional- order chaotic system, where the slave system is not necessarily known in advance. Based on the designed adaptive update laws and the linear feedback method, the adaptive fuzzy sliding controllers are proposed via the fuzzy design, and the strength of the designed controllers can he adaptively adjusted according to the external disturbances. Based on the Lya- punov stability theorem, the stability and the robustness of the controlled system are proved theoretically. Numerical simu- lations further support the theoretical results of the paper and demonstrate the efficiency of the proposed method. Moreover, it is revealed that the proposed method allows us to manipulate arbitrarily the response dynamics of the slave system by adjusting the desired scaling factor λi and the desired translating factor ηi, which may be used in a channel-independent chaotic secure communication.
基金This work was supported in part by the Central Government Drects Special Funds for Scientific and Technological Development of China(2019L3009)Natural Science Foundation of Fujian Province of China(2020J02045).
文摘This article addresses the finite-time boundedness(FTB)problem for nonlinear descriptor systems.Firstly,the nonlinear descriptor system is represented by the Takagi-Sugeno(T-S)model,where fuzzy representation is assumed to be appearing not only in both the state and input matrices but also in the derivative matrix.By using a descriptor redundancy approach,the fuzzy representation in the derivative matrix is reformulated into a linear one.Then,we introduce a fuzzy sliding mode control(FSMC)law,which ensures the finite-time boundedness(FTB)of closed-loop fuzzy control systems over the reaching phase and sliding motion phase.Moreover,by further employing the descriptor redundancy representation,the sufficient condition for designing FSMC law,which ensures the FTB of the closed-loop control systems over the entire finite-time interval,is derived in terms of linear matrix inequalities(LMIs).Finally,a simulation study with control of a photovoltaic(PV)nonlinear system is given to show the effectiveness of the proposed method.
文摘In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear uncertain systems. Combining reaching law approach and fuzzy universal approximation theorem, the proposed design procedure combines the advantages of fuzzy logic control, adaptive control and sliding mode control. The stability of the control systems is proved in the sense of the Lyapunov second stability theorem. Two simulation studies are presented to demonstrate the effectiveness of our new hybrid control algorithm.
基金supported by the National Natural Science Foundation of China(6130422461305018+1 种基金61472423)the National Advanced Research Project of China(51301010206)
文摘In this paper, a novel fuzzy sliding mode control(FSMC) guidance law with terminal constraints of miss distance, impact angle and acceleration is presented for a constant speed missile against the stationary or slowly moving target. The proposed guidance law combines the sliding mode control algorithm with a fuzzy logic control scheme for the lag-free system and the first-order lag system. Through using Lyapunov stability theory, we prove the sliding surface converges to zero in finite time. Furthermore, considering the uncertain information and system disturbances, the guidance gains are on-line optimized by fuzzy logic technique. Numerical simulations are performed to demonstrate the performance of the FSMC guidance law and the results illustrate the validity and effectiveness of the proposed guidance law.
基金National Key R&D Program of China(No.2018YFB1201602)。
文摘Aimed at the problems of large torque ripple,obvious chattering and poor estimation accuracy of back-EMFs in traditional permanent magnet synchronous motor(PMSM)control system with sliding mode observer(SMO),an improved control strategy for PMSM based on a fuzzy sliding mode control(FSMC)and a two-stage filter sliding mode observer(TFSMO)is proposed.Firstly,a novel reaching law(NRL)used in the speed loop based on hyperbolic sine function is studied,and fuzzy control ideal is shown to achieve the self-turning of the parameter for the reaching law,thus a fuzzy integral sliding mode controller based on the novel reaching law is designed in speed loop.Then the suppression effect upon chattering caused by the novel reaching law is analyzed strictly by discrete equation.Secondly,in order to restrain the high frequency components and measurement noise in back-EMFs,a two-stage filter structure based on a variable cut-off frequency low-pass filter(VCF-LPF)and a modified back-EMF observer(MBO)is conceived,and the rotor position is compensated reasonably.As a result,a TFSMO is designed.The stability of the proposed control strategy is proved by Lyapunov Criterion.The simulation and experiment results show that,compared with traditional SMO,the controller suggested above can obtain very nice system respond when the motor starts and is subjected to external disturbances,and effectively improve the problems about torque ripple,chattering and the estimation accuracy of back-EMF.
基金This work was supported by the National Natural Science Foundation of China (No. 60474025, 90405017).
文摘A novel fuzzy terminal sliding mode control (FTSMC) scheme is proposed for position tracking of a class of second-order nonlinear uncertain system. In the proposed scheme, we integrate input-output linearization technique to cancel the nonlinearities. By using a function-augmented sliding hyperplane, it is guaranteed that the output tracking error converges to zero in finite time which can be set arbitrarily. The proposed scheme eliminates reaching phase problem, so that the closed-loop system always shows invariance property to parameter uncertainties. Fuzzy logic systems are used to approximate the unknown system functions and switch item. Robust adaptive law is proposed to reduce approximation errors between true nonlinear functions and fuzzy systems, thus chattering phenomenon can be eliminated. Stability of the proposed control scheme is proved and the scheme is applied to an inverted pendulum system. Simulation studies are provided to confirm performance and effectiveness of the proposed control approach.
基金Project supported by the LEB Research LaboratoryDepartment of Electrical Engineering,University of Batna 2, Algeria。
文摘The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parametric variations. Among the most evoked control strategies adopted in this field to overcome these drawbacks presented in classical drive, it is worth mentioning the use of the second order sliding mode control(SOSMC) based on the super twisting algorithm(STA) combined with the fuzzy logic control(FSOSMC). In order to realize the optimal control performance, the FSOSMC parameters are adjusted using an optimization algorithm based on the genetic algorithm(GA). The performances of the envisaged control scheme, called G-FSOSMC, are investigated against G-SOSMC, G-PI and BBO-FSOSMC algorithms. The proposed controller scheme is efficient in reducing the torque and flux ripples, and successfully suppresses chattering. The effects of parametric uncertainties do not affect system performance.