In order to improve the effectiveness of Fuzzy Synthetic Evaluation (FSE) models, a Parameter Correlation Analysis (PCA) was introduced into the FSE and a case study was carried out in the Naoli River in the Sanjiang ...In order to improve the effectiveness of Fuzzy Synthetic Evaluation (FSE) models, a Parameter Correlation Analysis (PCA) was introduced into the FSE and a case study was carried out in the Naoli River in the Sanjiang Plain, Northeast China. The basic principle of the PCA is that the pairs of parameters which are highly correlated and linear with each other would contribute the same information to an assessment and one of them should be eliminated. The method of the PCA is that a correlation relationship among candidate parameters is examined before the FSE. If there is an apparent nonlinear or curvilinear relationship between two parameters, then both will be retained; if the correlation is significant (p<0.01), and the scatter plot suggests a linear relationship, then one of them will be deleted. However, which one will be deleted? For solving this problem, a sensitivity test was conducted and the higher sensitivity parameters remained. The results indicate that the original data should be preprocessed through the PCA for redundancy and variability. The study shows that introducing the PCA into the FSE can simplify the FSE calculation process greatly, while the results have not been changed much.展开更多
From the perspective of geological zone selection for coalbed methane(CBM) development, the evaluation parameters(covering geological conditions and production conditions) of geological sweetspot for CBM development a...From the perspective of geological zone selection for coalbed methane(CBM) development, the evaluation parameters(covering geological conditions and production conditions) of geological sweetspot for CBM development are determined, and the evaluation index system of geological sweetspot for CBM development is established. On this basis, the fuzzy pattern recognition(FPR) model of geological sweetspot for CBM development is built. The model is applied to evaluate four units of No.3 Coal Seam in the Fanzhuang Block, southern Qinshui Basin, China. The evaluation results are consistent with the actual development effect and the existing research results, which verifies the rationality and reliability of the FPR model. The research shows that the proposed FPR model of geological sweetspot for CBM development does not involve parameter weighting which leads to uncertainties in the results of the conventional models such as analytic hierarchy process and multi-level fuzzy synthesis judgment, and features a simple computation without the construction of multi-level judgment matrix. The FPR model provides reliable results to support the efficient development of CBM.展开更多
基金Under the auspices of National Natural Science Foundation of China (No. 40830535)Knowledge Innovation Pro-gram of Chinese Academy of Sciences (No.KSCX2-YW-N-46-06)
文摘In order to improve the effectiveness of Fuzzy Synthetic Evaluation (FSE) models, a Parameter Correlation Analysis (PCA) was introduced into the FSE and a case study was carried out in the Naoli River in the Sanjiang Plain, Northeast China. The basic principle of the PCA is that the pairs of parameters which are highly correlated and linear with each other would contribute the same information to an assessment and one of them should be eliminated. The method of the PCA is that a correlation relationship among candidate parameters is examined before the FSE. If there is an apparent nonlinear or curvilinear relationship between two parameters, then both will be retained; if the correlation is significant (p<0.01), and the scatter plot suggests a linear relationship, then one of them will be deleted. However, which one will be deleted? For solving this problem, a sensitivity test was conducted and the higher sensitivity parameters remained. The results indicate that the original data should be preprocessed through the PCA for redundancy and variability. The study shows that introducing the PCA into the FSE can simplify the FSE calculation process greatly, while the results have not been changed much.
基金Key Project of China National Natural Science Foundation (42230814,52234002)Research Program Foundation of Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences),Ministry of Education (TPR-2022-17)。
文摘From the perspective of geological zone selection for coalbed methane(CBM) development, the evaluation parameters(covering geological conditions and production conditions) of geological sweetspot for CBM development are determined, and the evaluation index system of geological sweetspot for CBM development is established. On this basis, the fuzzy pattern recognition(FPR) model of geological sweetspot for CBM development is built. The model is applied to evaluate four units of No.3 Coal Seam in the Fanzhuang Block, southern Qinshui Basin, China. The evaluation results are consistent with the actual development effect and the existing research results, which verifies the rationality and reliability of the FPR model. The research shows that the proposed FPR model of geological sweetspot for CBM development does not involve parameter weighting which leads to uncertainties in the results of the conventional models such as analytic hierarchy process and multi-level fuzzy synthesis judgment, and features a simple computation without the construction of multi-level judgment matrix. The FPR model provides reliable results to support the efficient development of CBM.