System identification is a quintessential measure for real-time analysis on kinematic characteristics for deep-sea mining vehicle, and thus to enhance the control performance and testing efficiency. In this study, the...System identification is a quintessential measure for real-time analysis on kinematic characteristics for deep-sea mining vehicle, and thus to enhance the control performance and testing efficiency. In this study, the system identification algorithm, recursive least square method with instrumental variables(IV-RLS), is tailored to model ‘Pioneer I’, a deep-sea mining vehicle which recently completed a 1305-meter-deep sea trial in the Xisha area of the South China Sea in August, 2021. The algorithm operates on the sensor data collected from the trial to obtain the vehicle’s kinematic model and accordingly design the parameter self-tuning controller. The performances demonstrate the accuracy of the model, and prove its generalization capability. With this model, the optimal controller has been designed, the control parameters have been self-tuned, and the response time and robustness of the system have been optimized,which validates the high efficiency on digital modelling for precision control of deep-sea mining vehicles.展开更多
In this paper a trial has been made to design a simple self-tuning LabVIEW-based PID controller. The controller uses an open-loop relay test, calculates the tuned parameters in an open loop mode of operation before it...In this paper a trial has been made to design a simple self-tuning LabVIEW-based PID controller. The controller uses an open-loop relay test, calculates the tuned parameters in an open loop mode of operation before it updates controller parameters and runs the process as a closed-loop system. The controller reacts on a persistent offset error value as a result of load disturbance or a set point change. Practical results show that such a controller may be recommended to control a variety of industrial processes. A GUI was developed to facilitate control-mode selection, the setting of controller parameters, and the display of control system variables. GUI makes it possible to put the controller in manual or self-tuning mode.展开更多
A robust adaptive trajectory linearization control (RATLC) algorithm for a class of nonlinear systems with uncertainty and disturbance based on the T-S fuzzy system is presented. The unknown disturbance and uncertai...A robust adaptive trajectory linearization control (RATLC) algorithm for a class of nonlinear systems with uncertainty and disturbance based on the T-S fuzzy system is presented. The unknown disturbance and uncertainty are estimated by the T-S fuzzy system, and a robust adaptive control law is designed by the Lyapunov theory. Irrespective of whether the dimensions of the system and the rules of the fuzzy system are large or small, there is only one parameter adjusting on line. Uniformly ultimately boundedness of all signals of the composite closed-loop system are proved by theory analysis. Finally, a numerical example is studied based on the proposed method. The simulation results demonstrate the effectiveness and robustness of the control scheme.展开更多
The robust control problem for a class of uncertain switched fuzzy systems with delays is investigated. Firstly,the model of the switched fuzzy system is presented and the parallel distributed compensation( PDC) techn...The robust control problem for a class of uncertain switched fuzzy systems with delays is investigated. Firstly,the model of the switched fuzzy system is presented and the parallel distributed compensation( PDC) technology is employed to design fuzzy controllers. Then, based on the convex combination method, a sufficient condition for robust stabilization in terms of linear matrix inequalities( LMIs) is obtained and a switching law is presented.Meanwhile,the Lyapunov-Krasovskii functional is taken to deal with time varying delays. Moreover,an algorithm is applied to finding a solution for a group of convex combination coefficient. Finally,a numerical example is given to demonstrate the effectiveness of the proposed method.展开更多
The robust H∞ control problem for a class of uncertain Takagi-Sugeno fuzzy systems with timevarying state delays is studied. The uncertain parameters are supposed to reside in a polytope. Based on the delay-dependent...The robust H∞ control problem for a class of uncertain Takagi-Sugeno fuzzy systems with timevarying state delays is studied. The uncertain parameters are supposed to reside in a polytope. Based on the delay-dependent Lyapunov functional method, a new delay-dependent robust H∞ fuzzy controller, which depends on the size of the delays and the derivative of the delays, is presented in term of linear matrix inequalities (LMIs). For all admissible uncertainties and delays, the controller guarantees not only the asymptotic stability of the system but also the prescribed H∞ attenuation level. In addition, the effectiveness of the proposed design method is demonstrated by a numerical example.展开更多
This paper deals with the problem of guaranteed cost control for nonlinear systems with time-varying delays which is represented by Takagi-Sugeno (T-S) fuzzy models with time-varying delays.The derivatives of time-v...This paper deals with the problem of guaranteed cost control for nonlinear systems with time-varying delays which is represented by Takagi-Sugeno (T-S) fuzzy models with time-varying delays.The derivatives of time-varying delay are not necessary to be bounded.Based on the free weighting matrix method,sufficient conditions for the existence of fuzzy guaranteed cost controller via state feedback are given in terms of linear matrix inequalities (LMIs).A minimizing method is also proposed to search the suboptimal upper bound of the guaranteed cost function.The results are delay-dependent but contain delay-independent criteria as a special case.A numerical example is presented to demonstrate the effectiveness and less conservativeness of our work.展开更多
A model of uncertain switched fuzzy systems whose subsystems are uncertain fuzzy systems is presented. Robust controllers for a class of switched fuzzy systems are designed by using the Lyapunov function method. Stabi...A model of uncertain switched fuzzy systems whose subsystems are uncertain fuzzy systems is presented. Robust controllers for a class of switched fuzzy systems are designed by using the Lyapunov function method. Stability conditions for global asymptotic stability are developed and a switching strategy is proposed. An example shows the effectiveness of the method.展开更多
This article deals with the robust stability analysis and passivity of uncertain discrete-time Takagi- Sugeno (T-S) fuzzy systems with time delays. The T-S fuzzy model with parametric uncertainties can approximate n...This article deals with the robust stability analysis and passivity of uncertain discrete-time Takagi- Sugeno (T-S) fuzzy systems with time delays. The T-S fuzzy model with parametric uncertainties can approximate nonlinear uncertain systems at any precision. A sufficient condition on the existence of robust passive controller is established based on the Lyapunov stability theory. With the help of linear matrix inequality (LMI) method, robust passive controllers are designed so that the closed-loop system is robust stable and strictly passive. Furthermore, a convex optimization problem with LMI constraints is formulated to design robust passive controllers with the maximum dissipation rate. A numerical example illustrates the validity of the proposed method.展开更多
This paper considers the guaranteed cost control problem for a class of uncertain discrete T-S fuzzy systems with time delay and a given quadratic cost function. Sufficient conditions for the existence of such control...This paper considers the guaranteed cost control problem for a class of uncertain discrete T-S fuzzy systems with time delay and a given quadratic cost function. Sufficient conditions for the existence of such controllers are derived based on the linear matrix inequalities (LMI) approach by constructing a specific nonquadratic Lyapunov-Krasovskii functional and a nonlinear PDC-like control law. A convex optimization problem is also formulated to select the optimal guaranteed cost controller that minimizes the upper bound of the closed-loop cost function. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed approaches.展开更多
Generalized H2 (GH2) stability analysis and controller design of the uncertain discrete-time Takagi-Sugeno (T-S) fuzzy systems with state delay are studied based on a switching fuzzy model and piecewise Lyapunov f...Generalized H2 (GH2) stability analysis and controller design of the uncertain discrete-time Takagi-Sugeno (T-S) fuzzy systems with state delay are studied based on a switching fuzzy model and piecewise Lyapunov function. GH2 stability sufficient conditions are derived in terms of linear matrix inequalities (LMIs). The interactions among the fuzzy subsystems are considered. Therefore, the proposed conditions are less conservative than the previous results. Since only a set of LMIs is involved, the controller design is quite simple and numerically tractable. To illustrate the validity of the proposed method, a design example is provided.展开更多
Takagi-Sugeno(T-S) fuzzy model is difficult to be linearized because of membership functions included.So,novel T-S fuzzy state transformation and T-S fuzzy feedback are proposed for the linearization of T-S fuzzy syst...Takagi-Sugeno(T-S) fuzzy model is difficult to be linearized because of membership functions included.So,novel T-S fuzzy state transformation and T-S fuzzy feedback are proposed for the linearization of T-S fuzzy system.The novel T-S fuzzy state transformation is the fuzzy combination of local linear transformation which transforms local linear models in the T-S fuzzy model into the local linear controllable canonical models.The fuzzy combination of local linear controllable canonical model gives controllable canonical T-S fuzzy model and then nonlinear feedback is obtained easily.After the linearization of T-S fuzzy model,a robust H∞ controller with the robustness of sliding model control(SMC) is designed.As a result,controlled T-S fuzzy system shows the performance of H∞ control and the robustness of SMC.展开更多
The robust H∞ control problem of norm bounded uncertain discrete Takagi-Sugeno (T-S) fuzzy systems with state delay is addressed. First, by constructing an appropriate basis-dependent Lyapunov-Krasovskii function, ...The robust H∞ control problem of norm bounded uncertain discrete Takagi-Sugeno (T-S) fuzzy systems with state delay is addressed. First, by constructing an appropriate basis-dependent Lyapunov-Krasovskii function, a new delay-dependent sufficient condition on robust H∞-disturbance attenuation is presented, in which both robust stability and prescribed H∞ performance are guaranteed to be achieved. Then based on the condition, a delay-dependent robust Hoo controller design scheme is developed in term of a convex algorithm. Finally, examples are given to illustrate the effectiveness of the proposed method.展开更多
Unlike the previous research works analyzing the stability of the T-S (Takagi-Sugeno) fuzzy model, an extension on the stability condition of T-S fuzzy systems with a different strategy is provided. In the strategy ...Unlike the previous research works analyzing the stability of the T-S (Takagi-Sugeno) fuzzy model, an extension on the stability condition of T-S fuzzy systems with a different strategy is provided. In the strategy a new variable, which is relative to the grade of fuzzy membership function, is introduced to the stability analysis and a new stability conclusion is deduced. The definition of stability condition in this paper is different from previous works, though they are similar in form. With the proposed method, the simulation in flight control law shows a better effectiveness.展开更多
Asymptotically necessary and sufficient quadratic stability conditions of Takagi-Sugeno (T-S) fuzzy systems are obtained by utilizing staircase membership functions and a basic inequality. The information of the membe...Asymptotically necessary and sufficient quadratic stability conditions of Takagi-Sugeno (T-S) fuzzy systems are obtained by utilizing staircase membership functions and a basic inequality. The information of the membership functions is incorporated in the stability analysis by approximating the original continuous membership functions with staircase membership functions. The stability of the T-S fuzzy systems was investigated based on a quadratic Lyapunov function. The asymptotically necessary and sufficient stability conditions in terms of linear matrix inequalities were derived using a basic inequality. A fuzzy controller was also designed based on the stability results. The derivation process of the stability results is straightforward and easy to understand. Case studies confirmed the validity of the obtained stability results.展开更多
A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As t...A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.展开更多
A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Co...A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Combing the traits of SMC and CSTR,three fuzzy rules can meet the requirements of controlled system.The self-tuning switch control law which can drive the state variables to the sliding surface as soon as possible is designed to ensure the robustness of uncertain fuzzy system.Lyapunov equation is applied to proving the stability of the sliding surface.The simulations show that the proposed approach can achieve desired performance with less chattering problem.展开更多
We consider the robust stabilization problem for discrete-time Takagi-Sugeno (T S) fuzzy systems with time- varied delays subjected to input saturation. We design static and dynamic anti-windup fuzzy controllers to ...We consider the robust stabilization problem for discrete-time Takagi-Sugeno (T S) fuzzy systems with time- varied delays subjected to input saturation. We design static and dynamic anti-windup fuzzy controllers to ensure the convergence of all admissible initial states within the domain of attraction. Based on the project lemma and classical sector conditions, the conditions for the existence of solutions to this problem are obtained and expressed in terms of a set of linear matrix inequalities. Finally, a numerical example is provided to illustrate the effectiveness of the proposed design approach.展开更多
This paper is concerned with the robust reliable memory controller design for a class of fuzzy uncertain systems with timevarying delay. The system under consideration is more general than those in other existent work...This paper is concerned with the robust reliable memory controller design for a class of fuzzy uncertain systems with timevarying delay. The system under consideration is more general than those in other existent works. The controller, which is dependent on the magnitudes and derivative of the delay, is proposed in terms of linear matrix inequality (LMI). The closed-loop system is asymptotically stable for all admissible uncertainties as well as actuator faults. A numerical example is presented for illustration.展开更多
One kind of the SAW seam tracking system with contactless ultrasonic sensor is presented in this paper. The new contactless ultrasonic sensor for seam tracking and the working principle of the seam tracking with the s...One kind of the SAW seam tracking system with contactless ultrasonic sensor is presented in this paper. The new contactless ultrasonic sensor for seam tracking and the working principle of the seam tracking with the sensor are introduced. Based on the experiments, the optimal values of the fuzzy control parameters α and k 3 are defined by means of the off line adjusting method. Because the self tuning fuzzy control is adopted in the seam tracking system, the overshoot of the system is restrained, the steady state error is reduced, and the system's response speed is improved effectively. The results of the SAW seam tracking experiments show that this system's tracking accuracy is up to ±0.5 mm and the system can satisfy the requirements of the engineering application.展开更多
基金financially supported by the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(Grant No.2021JJLH0078)the Science and Technology Commission of Shanghai Municipality (Grant No.19DZ1207300)the Major Projects of Strategic Emerging Industries in Shanghai。
文摘System identification is a quintessential measure for real-time analysis on kinematic characteristics for deep-sea mining vehicle, and thus to enhance the control performance and testing efficiency. In this study, the system identification algorithm, recursive least square method with instrumental variables(IV-RLS), is tailored to model ‘Pioneer I’, a deep-sea mining vehicle which recently completed a 1305-meter-deep sea trial in the Xisha area of the South China Sea in August, 2021. The algorithm operates on the sensor data collected from the trial to obtain the vehicle’s kinematic model and accordingly design the parameter self-tuning controller. The performances demonstrate the accuracy of the model, and prove its generalization capability. With this model, the optimal controller has been designed, the control parameters have been self-tuned, and the response time and robustness of the system have been optimized,which validates the high efficiency on digital modelling for precision control of deep-sea mining vehicles.
文摘In this paper a trial has been made to design a simple self-tuning LabVIEW-based PID controller. The controller uses an open-loop relay test, calculates the tuned parameters in an open loop mode of operation before it updates controller parameters and runs the process as a closed-loop system. The controller reacts on a persistent offset error value as a result of load disturbance or a set point change. Practical results show that such a controller may be recommended to control a variety of industrial processes. A GUI was developed to facilitate control-mode selection, the setting of controller parameters, and the display of control system variables. GUI makes it possible to put the controller in manual or self-tuning mode.
基金the National Natural Science Foundation of China (90716028 and 90405011).
文摘A robust adaptive trajectory linearization control (RATLC) algorithm for a class of nonlinear systems with uncertainty and disturbance based on the T-S fuzzy system is presented. The unknown disturbance and uncertainty are estimated by the T-S fuzzy system, and a robust adaptive control law is designed by the Lyapunov theory. Irrespective of whether the dimensions of the system and the rules of the fuzzy system are large or small, there is only one parameter adjusting on line. Uniformly ultimately boundedness of all signals of the composite closed-loop system are proved by theory analysis. Finally, a numerical example is studied based on the proposed method. The simulation results demonstrate the effectiveness and robustness of the control scheme.
基金National Natural Science Foundation of China(No.51375228)Natural Science Foundation of Jiangsu Province,China(No.BK20130791)
文摘The robust control problem for a class of uncertain switched fuzzy systems with delays is investigated. Firstly,the model of the switched fuzzy system is presented and the parallel distributed compensation( PDC) technology is employed to design fuzzy controllers. Then, based on the convex combination method, a sufficient condition for robust stabilization in terms of linear matrix inequalities( LMIs) is obtained and a switching law is presented.Meanwhile,the Lyapunov-Krasovskii functional is taken to deal with time varying delays. Moreover,an algorithm is applied to finding a solution for a group of convex combination coefficient. Finally,a numerical example is given to demonstrate the effectiveness of the proposed method.
文摘The robust H∞ control problem for a class of uncertain Takagi-Sugeno fuzzy systems with timevarying state delays is studied. The uncertain parameters are supposed to reside in a polytope. Based on the delay-dependent Lyapunov functional method, a new delay-dependent robust H∞ fuzzy controller, which depends on the size of the delays and the derivative of the delays, is presented in term of linear matrix inequalities (LMIs). For all admissible uncertainties and delays, the controller guarantees not only the asymptotic stability of the system but also the prescribed H∞ attenuation level. In addition, the effectiveness of the proposed design method is demonstrated by a numerical example.
基金supported by the National Natural Science Foundation of China(No.60804011,60474058)the Science and Technology Project of Liaoning Provincial Education Department
文摘This paper deals with the problem of guaranteed cost control for nonlinear systems with time-varying delays which is represented by Takagi-Sugeno (T-S) fuzzy models with time-varying delays.The derivatives of time-varying delay are not necessary to be bounded.Based on the free weighting matrix method,sufficient conditions for the existence of fuzzy guaranteed cost controller via state feedback are given in terms of linear matrix inequalities (LMIs).A minimizing method is also proposed to search the suboptimal upper bound of the guaranteed cost function.The results are delay-dependent but contain delay-independent criteria as a special case.A numerical example is presented to demonstrate the effectiveness and less conservativeness of our work.
基金the National Natural Science Foundation of China(No.60574013, 60274009).
文摘A model of uncertain switched fuzzy systems whose subsystems are uncertain fuzzy systems is presented. Robust controllers for a class of switched fuzzy systems are designed by using the Lyapunov function method. Stability conditions for global asymptotic stability are developed and a switching strategy is proposed. An example shows the effectiveness of the method.
基金supported by the National Natural Science Foundation of China(60710002)Self-Planned Task of State Key Laboratory of Robotics and System(SKLRS200801A03).
文摘This article deals with the robust stability analysis and passivity of uncertain discrete-time Takagi- Sugeno (T-S) fuzzy systems with time delays. The T-S fuzzy model with parametric uncertainties can approximate nonlinear uncertain systems at any precision. A sufficient condition on the existence of robust passive controller is established based on the Lyapunov stability theory. With the help of linear matrix inequality (LMI) method, robust passive controllers are designed so that the closed-loop system is robust stable and strictly passive. Furthermore, a convex optimization problem with LMI constraints is formulated to design robust passive controllers with the maximum dissipation rate. A numerical example illustrates the validity of the proposed method.
基金supported by the Natural Science Foundation of Hubei Province (No.2007ABA361)
文摘This paper considers the guaranteed cost control problem for a class of uncertain discrete T-S fuzzy systems with time delay and a given quadratic cost function. Sufficient conditions for the existence of such controllers are derived based on the linear matrix inequalities (LMI) approach by constructing a specific nonquadratic Lyapunov-Krasovskii functional and a nonlinear PDC-like control law. A convex optimization problem is also formulated to select the optimal guaranteed cost controller that minimizes the upper bound of the closed-loop cost function. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed approaches.
文摘Generalized H2 (GH2) stability analysis and controller design of the uncertain discrete-time Takagi-Sugeno (T-S) fuzzy systems with state delay are studied based on a switching fuzzy model and piecewise Lyapunov function. GH2 stability sufficient conditions are derived in terms of linear matrix inequalities (LMIs). The interactions among the fuzzy subsystems are considered. Therefore, the proposed conditions are less conservative than the previous results. Since only a set of LMIs is involved, the controller design is quite simple and numerically tractable. To illustrate the validity of the proposed method, a design example is provided.
基金Research financially supported by Changwon National University in 2009
文摘Takagi-Sugeno(T-S) fuzzy model is difficult to be linearized because of membership functions included.So,novel T-S fuzzy state transformation and T-S fuzzy feedback are proposed for the linearization of T-S fuzzy system.The novel T-S fuzzy state transformation is the fuzzy combination of local linear transformation which transforms local linear models in the T-S fuzzy model into the local linear controllable canonical models.The fuzzy combination of local linear controllable canonical model gives controllable canonical T-S fuzzy model and then nonlinear feedback is obtained easily.After the linearization of T-S fuzzy model,a robust H∞ controller with the robustness of sliding model control(SMC) is designed.As a result,controlled T-S fuzzy system shows the performance of H∞ control and the robustness of SMC.
文摘The robust H∞ control problem of norm bounded uncertain discrete Takagi-Sugeno (T-S) fuzzy systems with state delay is addressed. First, by constructing an appropriate basis-dependent Lyapunov-Krasovskii function, a new delay-dependent sufficient condition on robust H∞-disturbance attenuation is presented, in which both robust stability and prescribed H∞ performance are guaranteed to be achieved. Then based on the condition, a delay-dependent robust Hoo controller design scheme is developed in term of a convex algorithm. Finally, examples are given to illustrate the effectiveness of the proposed method.
基金supported by the Aviation Science Foundation under Grant No.20110776001Zhejiang Provincial Natural Science Foundation under Grants No. Y1100696 and No.R1090052+1 种基金the Fundamental Research Funds for the Central Universities under Grant No.2011QNA4021National Natural Science Foundation of China under Grant No.61070003 and No.61071128
文摘Unlike the previous research works analyzing the stability of the T-S (Takagi-Sugeno) fuzzy model, an extension on the stability condition of T-S fuzzy systems with a different strategy is provided. In the strategy a new variable, which is relative to the grade of fuzzy membership function, is introduced to the stability analysis and a new stability conclusion is deduced. The definition of stability condition in this paper is different from previous works, though they are similar in form. With the proposed method, the simulation in flight control law shows a better effectiveness.
文摘Asymptotically necessary and sufficient quadratic stability conditions of Takagi-Sugeno (T-S) fuzzy systems are obtained by utilizing staircase membership functions and a basic inequality. The information of the membership functions is incorporated in the stability analysis by approximating the original continuous membership functions with staircase membership functions. The stability of the T-S fuzzy systems was investigated based on a quadratic Lyapunov function. The asymptotically necessary and sufficient stability conditions in terms of linear matrix inequalities were derived using a basic inequality. A fuzzy controller was also designed based on the stability results. The derivation process of the stability results is straightforward and easy to understand. Case studies confirmed the validity of the obtained stability results.
文摘A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.
文摘A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Combing the traits of SMC and CSTR,three fuzzy rules can meet the requirements of controlled system.The self-tuning switch control law which can drive the state variables to the sliding surface as soon as possible is designed to ensure the robustness of uncertain fuzzy system.Lyapunov equation is applied to proving the stability of the sliding surface.The simulations show that the proposed approach can achieve desired performance with less chattering problem.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61203047 and 60904023)
文摘We consider the robust stabilization problem for discrete-time Takagi-Sugeno (T S) fuzzy systems with time- varied delays subjected to input saturation. We design static and dynamic anti-windup fuzzy controllers to ensure the convergence of all admissible initial states within the domain of attraction. Based on the project lemma and classical sector conditions, the conditions for the existence of solutions to this problem are obtained and expressed in terms of a set of linear matrix inequalities. Finally, a numerical example is provided to illustrate the effectiveness of the proposed design approach.
基金This work was supported by National Natural Science Foundation of PRC (No. 60574084)National 863 Project (No. 2006AA04Z428)the National 973 Program (No. 2002CB312200) of PRC.
文摘This paper is concerned with the robust reliable memory controller design for a class of fuzzy uncertain systems with timevarying delay. The system under consideration is more general than those in other existent works. The controller, which is dependent on the magnitudes and derivative of the delay, is proposed in terms of linear matrix inequality (LMI). The closed-loop system is asymptotically stable for all admissible uncertainties as well as actuator faults. A numerical example is presented for illustration.
文摘One kind of the SAW seam tracking system with contactless ultrasonic sensor is presented in this paper. The new contactless ultrasonic sensor for seam tracking and the working principle of the seam tracking with the sensor are introduced. Based on the experiments, the optimal values of the fuzzy control parameters α and k 3 are defined by means of the off line adjusting method. Because the self tuning fuzzy control is adopted in the seam tracking system, the overshoot of the system is restrained, the steady state error is reduced, and the system's response speed is improved effectively. The results of the SAW seam tracking experiments show that this system's tracking accuracy is up to ±0.5 mm and the system can satisfy the requirements of the engineering application.