By the best approximation theory, it is first proved that the SISO (single-input single-output) linear Takagi-Sugeno (TS) fuzzy systems can approximate an arbitrary polynomial which, according to Weierstrass appro...By the best approximation theory, it is first proved that the SISO (single-input single-output) linear Takagi-Sugeno (TS) fuzzy systems can approximate an arbitrary polynomial which, according to Weierstrass approximation theorem, can uniformly approximate any continuous functions on the compact domain. Then new sufficient conditions for general linear SISO TS fuzzy systems as universal approximators are obtained. Formulae are derived to calculate the number of input fuzzy sets to satisfy the given approximation accuracy. Then the presented result is compared with the existing literature's results. The comparison shows that the presented result needs less input fuzzy sets, which can simplify the design of the fuzzy system, and examples are given to show its effectiveness.展开更多
Attribute reduction is one of the most important problems in rough set theory. This paper introduces the concept of lower approximation reduction in ordered information systems with fuzzy decision. Moreover, the judgm...Attribute reduction is one of the most important problems in rough set theory. This paper introduces the concept of lower approximation reduction in ordered information systems with fuzzy decision. Moreover, the judgment theorem and discernable matrix are obtained, in which case an approach to attribute reduction in ordered information system with fuzzy decision is constructed. As an application of lower approximation reduction, some examples are applied to examine the validity of works obtained in our works..展开更多
By defining fuzzy valued simple functions and giving L1(μ) approximations of fuzzy valued integrably bounded functions by such simple functions, the paper analyses by L1(μ)-norm the approximation capability of four-...By defining fuzzy valued simple functions and giving L1(μ) approximations of fuzzy valued integrably bounded functions by such simple functions, the paper analyses by L1(μ)-norm the approximation capability of four-layer feedforward regular fuzzy neural networks to the fuzzy valued integrably bounded function F : Rn → FcO(R). That is, if the transfer functionσ: R→R is non-polynomial and integrable function on each finite interval, F may be innorm approximated by fuzzy valued functions defined as to anydegree of accuracy. Finally some real examples demonstrate the conclusions.展开更多
A class of new fuzzy inference systems New-FISs is presented.Compared with the standard fuzzy system, New-FIS is still a universal approximator and has no fuzzy rule base and linearly parameter growth. Thus, it effect...A class of new fuzzy inference systems New-FISs is presented.Compared with the standard fuzzy system, New-FIS is still a universal approximator and has no fuzzy rule base and linearly parameter growth. Thus, it effectively overcomes the second "curse of dimensionality":there is an exponential growth in the number of parameters of a fuzzy system as the number of input variables,resulting in surprisingly reduced computational complexity and being especially suitable for applications,where the complexity is of the first importance with respect to the approximation accuracy.展开更多
Four layer feedforward regular fuzzy neural networks are constructed. Universal approximations to some continuous fuzzy functions defined on F 0 (R) n by the four layer fuzzy neural networks are shown. At f...Four layer feedforward regular fuzzy neural networks are constructed. Universal approximations to some continuous fuzzy functions defined on F 0 (R) n by the four layer fuzzy neural networks are shown. At first,multivariate Bernstein polynomials associated with fuzzy valued functions are empolyed to approximate continuous fuzzy valued functions defined on each compact set of R n . Secondly,by introducing cut preserving fuzzy mapping,the equivalent conditions for continuous fuzzy functions that can be arbitrarily closely approximated by regular fuzzy neural networks are shown. Finally a few of sufficient and necessary conditions for characterizing approximation capabilities of regular fuzzy neural networks are obtained. And some concrete fuzzy functions demonstrate our conclusions.展开更多
For the moment, the representative and hot research is decision-theoretic rough set (DTRS) which provides a new viewpoint to deal with decision-making problems under risk and uncertainty, and has been applied in many ...For the moment, the representative and hot research is decision-theoretic rough set (DTRS) which provides a new viewpoint to deal with decision-making problems under risk and uncertainty, and has been applied in many fields. Based on rough set theory, Yao proposed the three-way decision theory which is a prolongation of the classical two-way decision approach. This paper investigates the probabilistic DTRS in the framework of intuitionistic fuzzy information system (IFIS). Firstly, based on IFIS, this paper constructs fuzzy approximate spaces and intuitionistic fuzzy (IF) approximate spaces by defining fuzzy equivalence relation and IF equivalence relation, respectively. And the fuzzy probabilistic spaces and IF probabilistic spaces are based on fuzzy approximate spaces and IF approximate spaces, respectively. Thus, the fuzzy probabilistic approximate spaces and the IF probabilistic approximate spaces are constructed, respectively. Then, based on the three-way decision theory, this paper structures DTRS approach model on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. So, the fuzzy decision-theoretic rough set (FDTRS) model and the intuitionistic fuzzy decision-theoretic rough set (IFDTRS) model are constructed on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. Finally, based on the above DTRS model, some illustrative examples about the risk investment of projects are introduced to make decision analysis. Furthermore, the effectiveness of this method is verified.展开更多
The functional relationship of approximation accuracy and number of fuzzy sets is used to find the rational balance point between the control accuracy and the control cost of fuzzy systems. This approach efficiently e...The functional relationship of approximation accuracy and number of fuzzy sets is used to find the rational balance point between the control accuracy and the control cost of fuzzy systems. This approach efficiently eliminates the drawback of rapid control cost increase caused by blind increase of fuzzy set number in practical engineering. The sufficient conditions for TS fuzzy systems as universal approximators are derived. A special T-S fuzzy system that satisfied these conditions is analyzed, and the simulation results show that when the number of fuzzy sets is increased moderately, the model parameters' training epochs can be effectually decreased while the model accuracy improved significantly. A practical welding power source controlled by a T-S fuzzy system is developed with satisfactory experimental results.展开更多
In this paper, a hybrid Fuzzy Neural Network (FNN) system for function approximation is presented. The proposed FNN can handle numeric and fuzzy inputs simultaneously. The numeric inputs are fuzzified by input nodes u...In this paper, a hybrid Fuzzy Neural Network (FNN) system for function approximation is presented. The proposed FNN can handle numeric and fuzzy inputs simultaneously. The numeric inputs are fuzzified by input nodes upon presentation to the network while the Fuzzy rule based knowledge is translated directly into network architecture. The connections between input to hidden nodes represent rule antecedents and hidden to output nodes represent rule consequents. All the connections are represented by Gaussian fuzzy sets. The method of activation spread in the network is based on a fuzzy mutual subsethood measure. Rule (hidden) node activations are computed as a fuzzy inner product. For a given numeric o fuzzy input, numeric outputs are computed using volume based defuzzification. A supervised learning procedure based on gradient descent is employed to train the network. The model has been tested on two different approximation problems: sine-cosine function approximation and Narazaki-Ralescu function and shows its natural capability of inference, function approximation, and classification.展开更多
The universal approximation capability of fuzzy systems using translations and dilations of one fixed function (called basis function) as their membership functions is discussed. Such types of fuzzy systems are proved...The universal approximation capability of fuzzy systems using translations and dilations of one fixed function (called basis function) as their membership functions is discussed. Such types of fuzzy systems are proved to be universal approximators under conditions that the basis function is integrable, with nonvanishing integral, and a.e. continuous. This result enlarges the family of fuzzy systems which can be universal approximators. Two simulation experiments are designed to verify the conclusion.展开更多
Designing a fuzzy inference system(FIS)from data can be divided into two main phases:structure identification and parameter optimization.First,starting from a simple initial topology,the membership functions and syste...Designing a fuzzy inference system(FIS)from data can be divided into two main phases:structure identification and parameter optimization.First,starting from a simple initial topology,the membership functions and system rules are defined as specific structures.Second,to speed up the convergence of the learning algorithm and lighten the oscillation,an improved descent method for FIS generation is developed.Furthermore, the convergence and the oscillation of the algorithm are system- atically analyzed.Third,using the information obtained from the previous phase,it can be decided in which region of the in- put space the density of fuzzy rules should be enhanced and for which variable the number of fuzzy sets that used to partition the domain must be increased.Consequently,this produces a new and more appropriate structure.Finally,the proposed method is applied to the problem of nonlinear function approximation.展开更多
Winding/unwinding system control is a very important issue to web handling machines. In this paper, a novel adaptive H∞ control strategy is developed for winding process control. A gain scheduling scheme is proposed ...Winding/unwinding system control is a very important issue to web handling machines. In this paper, a novel adaptive H∞ control strategy is developed for winding process control. A gain scheduling scheme is proposed based on a neural fuzzy approximator to improve the transient response and enhance tension control;the controller’s convergence and adaptive capability can be further improved by an efficient hybrid training algorithm. The effectiveness of the proposed adaptive H∞ control is verified by experimental tests. Test results show that the developed gain approximator can adaptively accommodate parameter variations in the system and improve the control performance.展开更多
Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper descri...Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper describes an improved SPSA algorithm, which entails fuzzy adaptive gain sequences, gradient smoothing, and a step rejection procedure to enhance convergence and stability. The proposed fuzzy adaptive simultaneous perturbation approximation (FASPA) algorithm is particularly well suited to problems involving a large number of parameters such as those encountered in nonlinear system identification using neural networks (NNs). Accordingly, a multilayer perceptron (MLP) network with popular training algorithms was used to predicate the system response. We found that an MLP trained by FASPSA had the desired accuracy that was comparable to results obtained by traditional system identification algorithms. Simulation results for typical nonlinear systems demonstrate that the proposed NN architecture trained with FASPSA yields improved system identification as measured by reduced time of convergence and a smaller identification error.展开更多
Artificial intelligence(AI) is once again a topic of huge interest for computer scientists around the world. Whilst advances in the capability of machines are being made all around the world at an incredible rate, the...Artificial intelligence(AI) is once again a topic of huge interest for computer scientists around the world. Whilst advances in the capability of machines are being made all around the world at an incredible rate, there is also increasing focus on the need for computerised systems to be able to explain their decisions, at least to some degree. It is also clear that data and knowledge in the real world are characterised by uncertainty.Fuzzy systems can provide decision support, which both handle uncertainty and have explicit representations of uncertain knowledge and inference processes. However, it is not yet clear how any decision support systems, including those featuring fuzzy methods, should be evaluated as to whether their use is permitted.This paper presents a conceptual framework of indistinguishability as the key component of the evaluation of computerised decision support systems. Case studies are presented in which it has been clearly demonstrated that human expert performance is less than perfect, together with techniques that may enable fuzzy systems to emulate human-level performance including variability.In conclusion, this paper argues for the need for "fuzzy AI" in two senses:(i) the need for fuzzy methodologies(in the technical sense of Zadeh's fuzzy sets and systems) as knowledge-based systems to represent and reason with uncertainty; and(ii) the need for fuzziness(in the non-technical sense) with an acceptance of imperfect performance in evaluating AI systems.展开更多
文摘By the best approximation theory, it is first proved that the SISO (single-input single-output) linear Takagi-Sugeno (TS) fuzzy systems can approximate an arbitrary polynomial which, according to Weierstrass approximation theorem, can uniformly approximate any continuous functions on the compact domain. Then new sufficient conditions for general linear SISO TS fuzzy systems as universal approximators are obtained. Formulae are derived to calculate the number of input fuzzy sets to satisfy the given approximation accuracy. Then the presented result is compared with the existing literature's results. The comparison shows that the presented result needs less input fuzzy sets, which can simplify the design of the fuzzy system, and examples are given to show its effectiveness.
文摘Attribute reduction is one of the most important problems in rough set theory. This paper introduces the concept of lower approximation reduction in ordered information systems with fuzzy decision. Moreover, the judgment theorem and discernable matrix are obtained, in which case an approach to attribute reduction in ordered information system with fuzzy decision is constructed. As an application of lower approximation reduction, some examples are applied to examine the validity of works obtained in our works..
基金Supported by the National Natural Science Foundation of China(No:69872039)
文摘By defining fuzzy valued simple functions and giving L1(μ) approximations of fuzzy valued integrably bounded functions by such simple functions, the paper analyses by L1(μ)-norm the approximation capability of four-layer feedforward regular fuzzy neural networks to the fuzzy valued integrably bounded function F : Rn → FcO(R). That is, if the transfer functionσ: R→R is non-polynomial and integrable function on each finite interval, F may be innorm approximated by fuzzy valued functions defined as to anydegree of accuracy. Finally some real examples demonstrate the conclusions.
基金This work was supported by the RGC Competitive Earmarked Research Grant (No. PolyU 5065/98E)Natural Science Foundation of China (No. 60225015)+1 种基金Natural Science Foundation of Jiangsu Province (No. BK2003017)National Key Labruary of Novel Software Tech
文摘A class of new fuzzy inference systems New-FISs is presented.Compared with the standard fuzzy system, New-FIS is still a universal approximator and has no fuzzy rule base and linearly parameter growth. Thus, it effectively overcomes the second "curse of dimensionality":there is an exponential growth in the number of parameters of a fuzzy system as the number of input variables,resulting in surprisingly reduced computational complexity and being especially suitable for applications,where the complexity is of the first importance with respect to the approximation accuracy.
基金This work was supported by National Natural Science Foundation(699740 4 1 699740 0 6)
文摘Four layer feedforward regular fuzzy neural networks are constructed. Universal approximations to some continuous fuzzy functions defined on F 0 (R) n by the four layer fuzzy neural networks are shown. At first,multivariate Bernstein polynomials associated with fuzzy valued functions are empolyed to approximate continuous fuzzy valued functions defined on each compact set of R n . Secondly,by introducing cut preserving fuzzy mapping,the equivalent conditions for continuous fuzzy functions that can be arbitrarily closely approximated by regular fuzzy neural networks are shown. Finally a few of sufficient and necessary conditions for characterizing approximation capabilities of regular fuzzy neural networks are obtained. And some concrete fuzzy functions demonstrate our conclusions.
文摘For the moment, the representative and hot research is decision-theoretic rough set (DTRS) which provides a new viewpoint to deal with decision-making problems under risk and uncertainty, and has been applied in many fields. Based on rough set theory, Yao proposed the three-way decision theory which is a prolongation of the classical two-way decision approach. This paper investigates the probabilistic DTRS in the framework of intuitionistic fuzzy information system (IFIS). Firstly, based on IFIS, this paper constructs fuzzy approximate spaces and intuitionistic fuzzy (IF) approximate spaces by defining fuzzy equivalence relation and IF equivalence relation, respectively. And the fuzzy probabilistic spaces and IF probabilistic spaces are based on fuzzy approximate spaces and IF approximate spaces, respectively. Thus, the fuzzy probabilistic approximate spaces and the IF probabilistic approximate spaces are constructed, respectively. Then, based on the three-way decision theory, this paper structures DTRS approach model on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. So, the fuzzy decision-theoretic rough set (FDTRS) model and the intuitionistic fuzzy decision-theoretic rough set (IFDTRS) model are constructed on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. Finally, based on the above DTRS model, some illustrative examples about the risk investment of projects are introduced to make decision analysis. Furthermore, the effectiveness of this method is verified.
基金This work was supported by the National Natural Science Foundation of China (No 50575074)the Scientific and Technological Project of Guangdong (No 2003A1040310)
文摘The functional relationship of approximation accuracy and number of fuzzy sets is used to find the rational balance point between the control accuracy and the control cost of fuzzy systems. This approach efficiently eliminates the drawback of rapid control cost increase caused by blind increase of fuzzy set number in practical engineering. The sufficient conditions for TS fuzzy systems as universal approximators are derived. A special T-S fuzzy system that satisfied these conditions is analyzed, and the simulation results show that when the number of fuzzy sets is increased moderately, the model parameters' training epochs can be effectually decreased while the model accuracy improved significantly. A practical welding power source controlled by a T-S fuzzy system is developed with satisfactory experimental results.
文摘In this paper, a hybrid Fuzzy Neural Network (FNN) system for function approximation is presented. The proposed FNN can handle numeric and fuzzy inputs simultaneously. The numeric inputs are fuzzified by input nodes upon presentation to the network while the Fuzzy rule based knowledge is translated directly into network architecture. The connections between input to hidden nodes represent rule antecedents and hidden to output nodes represent rule consequents. All the connections are represented by Gaussian fuzzy sets. The method of activation spread in the network is based on a fuzzy mutual subsethood measure. Rule (hidden) node activations are computed as a fuzzy inner product. For a given numeric o fuzzy input, numeric outputs are computed using volume based defuzzification. A supervised learning procedure based on gradient descent is employed to train the network. The model has been tested on two different approximation problems: sine-cosine function approximation and Narazaki-Ralescu function and shows its natural capability of inference, function approximation, and classification.
文摘The universal approximation capability of fuzzy systems using translations and dilations of one fixed function (called basis function) as their membership functions is discussed. Such types of fuzzy systems are proved to be universal approximators under conditions that the basis function is integrable, with nonvanishing integral, and a.e. continuous. This result enlarges the family of fuzzy systems which can be universal approximators. Two simulation experiments are designed to verify the conclusion.
基金Supported by National Basic Research Program of China(973 Program)(2007CB714006)
文摘Designing a fuzzy inference system(FIS)from data can be divided into two main phases:structure identification and parameter optimization.First,starting from a simple initial topology,the membership functions and system rules are defined as specific structures.Second,to speed up the convergence of the learning algorithm and lighten the oscillation,an improved descent method for FIS generation is developed.Furthermore, the convergence and the oscillation of the algorithm are system- atically analyzed.Third,using the information obtained from the previous phase,it can be decided in which region of the in- put space the density of fuzzy rules should be enhanced and for which variable the number of fuzzy sets that used to partition the domain must be increased.Consequently,this produces a new and more appropriate structure.Finally,the proposed method is applied to the problem of nonlinear function approximation.
文摘Winding/unwinding system control is a very important issue to web handling machines. In this paper, a novel adaptive H∞ control strategy is developed for winding process control. A gain scheduling scheme is proposed based on a neural fuzzy approximator to improve the transient response and enhance tension control;the controller’s convergence and adaptive capability can be further improved by an efficient hybrid training algorithm. The effectiveness of the proposed adaptive H∞ control is verified by experimental tests. Test results show that the developed gain approximator can adaptively accommodate parameter variations in the system and improve the control performance.
文摘Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper describes an improved SPSA algorithm, which entails fuzzy adaptive gain sequences, gradient smoothing, and a step rejection procedure to enhance convergence and stability. The proposed fuzzy adaptive simultaneous perturbation approximation (FASPA) algorithm is particularly well suited to problems involving a large number of parameters such as those encountered in nonlinear system identification using neural networks (NNs). Accordingly, a multilayer perceptron (MLP) network with popular training algorithms was used to predicate the system response. We found that an MLP trained by FASPSA had the desired accuracy that was comparable to results obtained by traditional system identification algorithms. Simulation results for typical nonlinear systems demonstrate that the proposed NN architecture trained with FASPSA yields improved system identification as measured by reduced time of convergence and a smaller identification error.
文摘Artificial intelligence(AI) is once again a topic of huge interest for computer scientists around the world. Whilst advances in the capability of machines are being made all around the world at an incredible rate, there is also increasing focus on the need for computerised systems to be able to explain their decisions, at least to some degree. It is also clear that data and knowledge in the real world are characterised by uncertainty.Fuzzy systems can provide decision support, which both handle uncertainty and have explicit representations of uncertain knowledge and inference processes. However, it is not yet clear how any decision support systems, including those featuring fuzzy methods, should be evaluated as to whether their use is permitted.This paper presents a conceptual framework of indistinguishability as the key component of the evaluation of computerised decision support systems. Case studies are presented in which it has been clearly demonstrated that human expert performance is less than perfect, together with techniques that may enable fuzzy systems to emulate human-level performance including variability.In conclusion, this paper argues for the need for "fuzzy AI" in two senses:(i) the need for fuzzy methodologies(in the technical sense of Zadeh's fuzzy sets and systems) as knowledge-based systems to represent and reason with uncertainty; and(ii) the need for fuzziness(in the non-technical sense) with an acceptance of imperfect performance in evaluating AI systems.