One kind of the SAW seam tracking system with contactless ultrasonic sensor is presented in this paper. The new contactless ultrasonic sensor for seam tracking and the working principle of the seam tracking with the s...One kind of the SAW seam tracking system with contactless ultrasonic sensor is presented in this paper. The new contactless ultrasonic sensor for seam tracking and the working principle of the seam tracking with the sensor are introduced. Based on the experiments, the optimal values of the fuzzy control parameters α and k 3 are defined by means of the off line adjusting method. Because the self tuning fuzzy control is adopted in the seam tracking system, the overshoot of the system is restrained, the steady state error is reduced, and the system's response speed is improved effectively. The results of the SAW seam tracking experiments show that this system's tracking accuracy is up to ±0.5 mm and the system can satisfy the requirements of the engineering application.展开更多
In this paper, a fuzzy self-tuning Proportional-Integral-Derivative (PID) control of hydrogen-driven Pneumatic Artificial Muscle (PAM) actuator is presented. With a conventional PID control, non-linear thermodynam...In this paper, a fuzzy self-tuning Proportional-Integral-Derivative (PID) control of hydrogen-driven Pneumatic Artificial Muscle (PAM) actuator is presented. With a conventional PID control, non-linear thermodynamics of the hydrogen-driven PAM actuator still highly affects the mechanical actuations itself, causing deyiation of desired tasks. The fuzzy self-tuning PID con- troller is systematically developed so as to achieve dynamic performance targets of the hydrogen-driven PAM actuator. The fuzzy rules based on desired characteristics of closed-loop control are designed to finely tune the PID gains of the controller under different operating conditions. The empirical models and properties of the hydrogen-driven PAM actuator are used as a genuine representation of mechanical actuations. A mass-spring-damper system is applied to the hydrogen-driven PAM actuator as a typical mechanical load during actuations. The results of the implementation show that the viability of the proposed method in actuating the hydrogen-driven PAM under mechanical loads is close to desired oerformance.展开更多
文摘One kind of the SAW seam tracking system with contactless ultrasonic sensor is presented in this paper. The new contactless ultrasonic sensor for seam tracking and the working principle of the seam tracking with the sensor are introduced. Based on the experiments, the optimal values of the fuzzy control parameters α and k 3 are defined by means of the off line adjusting method. Because the self tuning fuzzy control is adopted in the seam tracking system, the overshoot of the system is restrained, the steady state error is reduced, and the system's response speed is improved effectively. The results of the SAW seam tracking experiments show that this system's tracking accuracy is up to ±0.5 mm and the system can satisfy the requirements of the engineering application.
文摘In this paper, a fuzzy self-tuning Proportional-Integral-Derivative (PID) control of hydrogen-driven Pneumatic Artificial Muscle (PAM) actuator is presented. With a conventional PID control, non-linear thermodynamics of the hydrogen-driven PAM actuator still highly affects the mechanical actuations itself, causing deyiation of desired tasks. The fuzzy self-tuning PID con- troller is systematically developed so as to achieve dynamic performance targets of the hydrogen-driven PAM actuator. The fuzzy rules based on desired characteristics of closed-loop control are designed to finely tune the PID gains of the controller under different operating conditions. The empirical models and properties of the hydrogen-driven PAM actuator are used as a genuine representation of mechanical actuations. A mass-spring-damper system is applied to the hydrogen-driven PAM actuator as a typical mechanical load during actuations. The results of the implementation show that the viability of the proposed method in actuating the hydrogen-driven PAM under mechanical loads is close to desired oerformance.