In this paper using the concept of Felbin-type fuzzy 2-norm ‖.,.‖ on a vector space,two I-topologies τ‖.,.‖ and τ*‖.,.‖ is constructed.After making our elementary observations on this fuzzy I-topologies,the co...In this paper using the concept of Felbin-type fuzzy 2-norm ‖.,.‖ on a vector space,two I-topologies τ‖.,.‖ and τ*‖.,.‖ is constructed.After making our elementary observations on this fuzzy I-topologies,the continuity of vector space operations is discussed and it is proved that the vector space with I-topology τ‖.,.‖ is not I-topological vector space but with τ*‖.,.‖ is I-topological vector space.Next we study the relationship between this two I-topologies and it is proved that τ*‖.,.‖■τ‖.,.‖.展开更多
文摘In this paper using the concept of Felbin-type fuzzy 2-norm ‖.,.‖ on a vector space,two I-topologies τ‖.,.‖ and τ*‖.,.‖ is constructed.After making our elementary observations on this fuzzy I-topologies,the continuity of vector space operations is discussed and it is proved that the vector space with I-topology τ‖.,.‖ is not I-topological vector space but with τ*‖.,.‖ is I-topological vector space.Next we study the relationship between this two I-topologies and it is proved that τ*‖.,.‖■τ‖.,.‖.