The structural stability, electronic structures, elastic properties and thermodynamic properties of the main binary phases Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca in Mg-Al-Ca-Sn alloy were determined from the ...The structural stability, electronic structures, elastic properties and thermodynamic properties of the main binary phases Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca in Mg-Al-Ca-Sn alloy were determined from the first-principles calculation. The calculated lattice parameters are in good agreement with the experimental and literature values. The calculated heats of formation and cohesive energies show that Al_2Ca has the strongest alloying ability and structural stability. The densities of states(DOS), Mulliken electron occupation number, metallicity and charge density difference of these compounds are given. The elastic constants of Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca phases are calculated, and the bulk moduli, shear moduli, elastic moduli and Poisson ratio are derived. The calculations of thermodynamic properties show that the Gibbs free energies of Al_2Ca and Mg_2 Sn are lower than that of Mg_(17)Al_(12), which indicates that Al_2Ca and Mg_2 Sn are more stable than Mg_(17)Al_(12) phase. Hence, the heat resistance of Mg-Al-based alloys can be improved by adding Ca and Sn additions.展开更多
The electronic structures and mechanical properties of Al4Sr, Mg2Sr and Mg23Sr6 phases were determined by the use of first-principles calculations. The calculated heat of formation and cohesive energy indicate that Al...The electronic structures and mechanical properties of Al4Sr, Mg2Sr and Mg23Sr6 phases were determined by the use of first-principles calculations. The calculated heat of formation and cohesive energy indicate that Al4Sr has the strongest alloying ability as well as the highest structural stability. The elastic parameters were calculated, and then the bulk modulus, shear modulus, elastic modulus and Poisson ratio were derived. The ductility and plasticity were discussed. The results show that Al4Sr and Mg2Sr phases both are ductile, on the contrary, Mg23Sr6 is brittle, and among the three phases, Mg2Sr is a phase with the best plasticity.展开更多
The electronic structures, chemical bonding and elastic properties of the tetragonal phase BiOCuS were investigated by using density-functional theory (DFT) within generalized gradient approximation (GGA). The cal...The electronic structures, chemical bonding and elastic properties of the tetragonal phase BiOCuS were investigated by using density-functional theory (DFT) within generalized gradient approximation (GGA). The calculated energy band structures show that the tetragonal phase BiOCuS is an indirect semiconductor with the calculated band gap of about 0.503 eV. The density of states (DOS) and the partial density of states (PDOS) calculations show that the DOS near the Fermi level is mainly from the Cu-3d state. Population analysis suggests that the chemical bonding in BiOCuS has predominantly ionic character with mixed covalent-ionic character. Basic physical properties, such as lattice constant, bulk modulus, shear modulus, elastic constants, were calculated. The elastic modulus and Poisson ratio were also predicted. The results show that tetragonal phase BiOCuS is mechanically stable and behaves in a ductile manner.展开更多
The electronic structures, chemical bonding and elastic properties of the Co2P-type structure phase ultra-incompressible Re2P (orthorhombic phase) were investigated by density-functional theory (DFT) within genera...The electronic structures, chemical bonding and elastic properties of the Co2P-type structure phase ultra-incompressible Re2P (orthorhombic phase) were investigated by density-functional theory (DFT) within generalized gradient approximation (GGA). The calculated energy band structures show that the orthorhombic structure phase Re2P is metallic material. The density of state (DOS) and the partial density of state (PDOS) calculations show that the DOS near the Fermi level is mainly from the Re-5d state. Population analysis suggests that the chemical bonding in Re2P has predominantly covalent character with mixed covalent-ionic character. Basic physical properties, such as lattice constant, bulk modulus, shear modulus, and elastic constants Cij, were calculated. The elastic modulus and Poisson ratio were also predicted. The results show that the Co2P-type structure phase Re2P is mechanically stable and behaves in a brittle manner.展开更多
First-principle calculations with different exchange-correlation functionals, including LDA, PBE, and vd W-DF functional in the form of opt B88-vd W, have been performed to investigate the electronic and elastic prope...First-principle calculations with different exchange-correlation functionals, including LDA, PBE, and vd W-DF functional in the form of opt B88-vd W, have been performed to investigate the electronic and elastic properties of twodimensional transition metal dichalcogenides(TMDCs) with the formula of MX2(M = Mo, W; X = O, S, Se, Te) in both monolayer and bilayer structures. The calculated band structures show a direct band gap for monolayer TMDCs at the K point except for MoO2 and WO2. When the monolayers are stacked into a bilayer, the reduced indirect band gaps are found except for bilayer WTe2, in which the direct gap is still present at the K point. The calculated in-plane Young moduli are comparable to that of graphene, which promises possible application of TMDCs in future flexible and stretchable electronic devices. We also evaluated the performance of different functionals including LDA, PBE, and opt B88-vd W in describing elastic moduli of TMDCs and found that LDA seems to be the most qualified method. Moreover, our calculations suggest that the Young moduli for bilayers are insensitive to stacking orders and the mechanical coupling between monolayers seems to be negligible.展开更多
The phase stability,elastic properties and electronic structures of three typical Mg-Y intermetallics including Mg_(24)Y_(5),Mg_(2)Y and MgY are systematically investigated using first-principles calculations based on...The phase stability,elastic properties and electronic structures of three typical Mg-Y intermetallics including Mg_(24)Y_(5),Mg_(2)Y and MgY are systematically investigated using first-principles calculations based on density functional theory.The optimized structural parameters including lattice constants and atomic coordinates are in good agreement with experimental values.The calculated cohesive energies and formation enthalpies show that either phase stability or alloying ability of the three intermetallics is gradually enhanced with increasing Y content.The single-crystal elastic constants C_(ij) of Mg-Y intermetallics are also calculated,and the bulk modulus B,shear modulus G,Young's modulus E,Poisson ratio v and anisotropy factor A of polycrystalline materials are derived.It is suggested that the resistances to volume and shear deformation as well as the stiffness of the three intermetallics are raised with increasing Y content.Besides,these intermetallics all exhibit ductile characteristics,and they are isotropic in compression but anisotropic to a certain degree in shear and stiffness.Comparatively,Mg_(24)Y_(5) presents a relatively higher ductility,while MgY has a relatively stronger anisotropy in shear and stiffness.Further analysis of electronic structures indicates that the phase stability of Mg-Y intermetallics is closely related with their bonding electrons numbers below Fermi level.Namely,the more bonding electrons number below Fermi level corresponds to the higher structural stability of Mg-Y intermetallics.展开更多
Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,exper...Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,experimental research on mechanics characteristics of ME-wheel under steady-state cornering conditions are carried out.The test of steady-state cornering properties of ME-wheel at different experimental parameter conditions is conducted by test bench for dynamic mechanical properties of tyre.Cornering property curves are used to analyze the steady-state cornering properties of ME-wheel,namely the variation tendency of lateral force or aligning torque with the increase of side-slip angle.Moreover,evaluation indexes for cornering properties of ME-wheel are extracted and the effect of different experimental parameters(including vertical load,friction coefficient,and speed)on cornering properties of ME-wheel is contrastively analyzed.The proposed research can provide certain reference to facilitate structure parameters and cornering properties optimizing process of ME-wheel.展开更多
Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be s...Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be satisfied by ordinary SCC. In this study, in order to solve the problem, a few principles of SCC design were proposed and the effects of binder amount, fly ash (FA) substitution, aggregate content and gradation on the workability, temperature rise, drying shrinkage and elastic modulus of SCC were investigated. The results and analysis indicate that the primary factor influencing the fluidity was paste content, and the main methods improving the elastic modulusof SCC were a lower sand ratio and an optimized coarse aggregate gradation. Lower adiabatic temperature rise and drying shrinkage were beneficial for decreasing the cement content. Further, based on the optimization of mixture, a C50 grade SCC (with binder amount of only 480 kg/ m3, fly ash substitution of 40%, sand ratio of 51% and proper coarse aggregate gradation (Vs.~0 mm: V10-16 ram: V16.20 mm= 30%: 30%:40%)) with superior workability was successfully prepared. The temperature rise and drying shrinkage of the prepared SCC were significantly reduced, and the elastic modulus reached 37.6 GPa at 28 d.展开更多
The structural, elastic, and electronic properties of a series of lanthanide hexaborides(Ln B6) have been investigated by performing ab initio calculations based on the density functional theory using the Vienna ab ...The structural, elastic, and electronic properties of a series of lanthanide hexaborides(Ln B6) have been investigated by performing ab initio calculations based on the density functional theory using the Vienna ab initio simulation package.The calculated lattice and elastic constants of Ln B6 are in good agreement with the available experimental data and other theoretical results. The polycrystalline Young's modulus, shear modulus, the ratio of bulk to shear modulus B/G, Poisson's ratios, Zener anisotropy factors, as well as the Debye temperature are calculated, and all of the properties display some regularity with increasing atomic number of lanthanide atoms, whereas anomalies are observed for Eu B6 and Yb B6. In addition, detailed electronic structure calculations are carried out to shed light on the peculiar elastic properties of Ln B6.The total density of states demonstrates the existence of a pseudogap and indicates lower structure stability of Eu B6 and Yb B6 compared with others.展开更多
The structures and elasticities of phase B silicates with different water and iron(Fe) content are obtained by firstprinciples simulation to understand the effects of water and Fe on their properties under high pres...The structures and elasticities of phase B silicates with different water and iron(Fe) content are obtained by firstprinciples simulation to understand the effects of water and Fe on their properties under high pressure.The lattice constants a and b decrease with increasing water content.On the contrary,c increases with increasing water content.On the other hand,the b and c decrease with increasing Fe content while a increases with increasing Fe content.The decrease of M(metal)–O octahedral volume is greater than the decrease of SiO polyhedral volume over the same pressure range.The density,bulk modulus and shear modulus of phase B increase with increasing Fe content and decrease with increasing water content.The compressional wave velocity(Vp) and shear wave velocity(Vs) of phase B decrease with increasing water and Fe content.The comparisons of density and wave velocity between phase B silicate and the Earth typical structure provide the evidence for understanding the formation of the X-discontinuity zone of the mantle.展开更多
The elastic stress distribution and the variation of the elastic energy with spacing between two inclusions of arbitrary sizes in an infinite isotropic cylindrical rod are obtained by an analytical approach and the ph...The elastic stress distribution and the variation of the elastic energy with spacing between two inclusions of arbitrary sizes in an infinite isotropic cylindrical rod are obtained by an analytical approach and the phase field microelasticity(PFM)simulation.The results show a near-attraction and far-repulsion elastic interaction between two inclusions with hydrostatic dilatation.The critical spacing,at which the interaction changes from attraction to repulsion,is on the order of the radius of the rod,dependent on the length and Poisson’s ratio of inclusions.Furthermore,the elastic energy calculations and PFM simulation results indicate that applying the local radial stress on the rod surface can modulate the elastic interaction between inclusions and adjust the periodicity of the superlattice nanowire structure.This can provide some guidelines for the tunable construction of superlattice nanowire structures.展开更多
This paper focused on the crystal structures of two new ternary phases,Ti(Cu,Pt)2 and Ti(Cu,Pt)3,which were studied by X-ray powder diffraction data using Rietveld method.Electron probe microanalysis was used for samp...This paper focused on the crystal structures of two new ternary phases,Ti(Cu,Pt)2 and Ti(Cu,Pt)3,which were studied by X-ray powder diffraction data using Rietveld method.Electron probe microanalysis was used for sample composition examination.Elastic properties of these phases were further measured by nano-indentation,and meanwhile calculated with first-principle(FP)calculations.It is found that the crystal structure of Ti(Cu,Pt)2 is of orthorhombic cell space group Amm2(No.38)with structural prototype of VAu2.The resolved structure of Ti(Cu,Pt)3 is of tetragonal Al Pt3 type,belonging to the space group P4/mmm(No.123).The nano-indentation measurement and FP calculations show that the elastic modulus of Ti(Cu,Pt)2 increases firstly then decreases with Pt content,whereas that of Ti(Cu,Pt)3almost linearly increases with Pt content.展开更多
The electronic structures,elastic properties and thermodynamics of MgZn_2,Mg_2Y and Mg_2 La have been determined from the first-principle calculations.The calculated heats of formation and cohesive energies show that ...The electronic structures,elastic properties and thermodynamics of MgZn_2,Mg_2Y and Mg_2 La have been determined from the first-principle calculations.The calculated heats of formation and cohesive energies show that Mg_2La has the strongest alloying ability and structural stability.The structural stability mechanism is also explained through the electronic structures of these phases.The ionicity and metallicity of the phases are estimated.The elastic constants are calculated;the bulk moduli,shear moduli.Young's moduli,Poisson's ratio value and elastic anisotropy are derived:and the brittleness.plasticity and anisotropy of these phases are discussed.Gibbs free energy,Debye temperature and heat capacity are calculated and discussed.展开更多
The resonance nuclear elastic scattering 16O(α,α) 16O at 3.045 MeV has been used to profile oxygen distributions in SOI material synthesised by SIMOX technique. The buried SiO2 layer is produced by 1.8×1018 at....The resonance nuclear elastic scattering 16O(α,α) 16O at 3.045 MeV has been used to profile oxygen distributions in SOI material synthesised by SIMOX technique. The buried SiO2 layer is produced by 1.8×1018 at./cm2 oxygen implantation at 500℃ and high temperature annealing at 1405℃ for 30 min. The experimental results show that after annealing sharp SiO2/Si interfaces at both sides of buried layer and a very good quality of top Si single crystal layer are obtained. The formation mechanism of the buried layer, correlated with SiO2 precipitates and dissolution, radiation enhanced diffusion and epitaxial growth, is discussed.展开更多
This paper studies the elastic and electronic structure properties of two new low-energy structures of PdN2 and PtN2 by first-principles calculations. It finds that tetragonal and monoclinic structures are more stable...This paper studies the elastic and electronic structure properties of two new low-energy structures of PdN2 and PtN2 by first-principles calculations. It finds that tetragonal and monoclinic structures are more stable than a pyrite one. The always positive eigenvalues of the elastic constant matrix confirm that both the tetragonal and monoclinic structures are elastically stable. The origin of the low bulk modulus of the two structures is discussed. The results of the calculated density of states show that both of the two low-energy structures are metallic.展开更多
We investigate the electronic structure, chemical bonding and elastic properties of the hexagonal aluminum carbonitride, Al5C3N, by ab initio calculations. Al5C3N is a semiconductor with a narrow indirect gap of 0.81 ...We investigate the electronic structure, chemical bonding and elastic properties of the hexagonal aluminum carbonitride, Al5C3N, by ab initio calculations. Al5C3N is a semiconductor with a narrow indirect gap of 0.81 eV. The valence bands below the Fermi level (EF) originate from the hybridized Al p-C p and A1 p-N p states. The calculated bulk and Young's moduli are 201 GPa and 292 GPa, which are slightly lower than those of Ti3SiC2. The values of the bulk-to-shear-modulus and bulk-modulus-to-c44 are 1.73 and 1.97, respectively, which are higher than those of Ti2AlC and Ti2AlN, indicating that Al5C3N is a ductile ceramic.展开更多
The structures, elasticities, sound velocities, and electronic properties of anhydrous and hydrous fayalite (Fe2SiO4 and Fe1.75H0.5SiO4) under high pressure have been investigated by means of the density functional ...The structures, elasticities, sound velocities, and electronic properties of anhydrous and hydrous fayalite (Fe2SiO4 and Fe1.75H0.5SiO4) under high pressure have been investigated by means of the density functional theory within the generalized gradient approximation (GGA) with the on-site Coulomb energy being taken into account (GGA+U). The optimized results show that H atoms prefer to substitute Fe atoms in the Fe1 site. Compared with the anhydrous fayalite Fe2SiO4, the mass density, elastic moduli, and sound velocities of Fe1.75H0.5SiO4 slightly decrease. According to our data, adding 2.3 wt% water into fayalite leads to reductions of compressional and shear wave velocities (VP and VS) by 3.4%-7.5% and 0.3%-3.4% at pressures from 0 GPa to 25 GPa, respectively, which are basically in agreement with the 2%-5% reductions of sound velocity obtained by the experimental measurement in the low velocity zones (LVZ). Based on the electronic structure, the valence and conduction bands are slightly broader for hydrous fayalite. However, hydrous fayalite keeps the insulation characteristics under the pressures up to 30 GPa, which indicates that hydration has little effect on its electronic structure.展开更多
The structural, electronic and elastic properties of Rb As systems (RbAs in NaP, LiAs and AuCu structures, RbAs2 in the MgCu2 structure, Rb3As in NaaAs, Cu3P and Li3Bi structures, and Rb5As4 in the A5B4 structure) a...The structural, electronic and elastic properties of Rb As systems (RbAs in NaP, LiAs and AuCu structures, RbAs2 in the MgCu2 structure, Rb3As in NaaAs, Cu3P and Li3Bi structures, and Rb5As4 in the A5B4 structure) are investigated with the generalized gradient approximation in tile frame of density functional theory. The lattice parameters, cohesive energies, formation energies, bulk moduli and the first derivatives of the bulk moduli (to fit Murnaghan's equation of state) of the considered structures are calculated and reasonable agreement is obtained. In addition, the phase transition pressures are also predicted. The electronic band structures, the partial densities of states corresponding to the band structures and the charge density distributions are presented and analysed. The second-order elastic constants based on the stress-strain method and other related quantities such as Young's modulus, the shear modulus, Poisson's ratio, sound velocities, the Debye temperature and shear anisotropy factors are also estimated.展开更多
According to the density functional theory we systematically study the electronic structure, the mechanical prop- erties and the intrinsic hardness of Si2N2O polymorphs using the first-principles method. The elastic c...According to the density functional theory we systematically study the electronic structure, the mechanical prop- erties and the intrinsic hardness of Si2N2O polymorphs using the first-principles method. The elastic constants of four Si2N2O structures are obtained using the stress-strain method. The mechanical moduli (bulk modulus, Young’s mod-ulus, and shear modulus) are evaluated using the Voigt-Reuss-Hill approach. It is found that the tetragonal Si2N2O exhibits a larger mechanical modulus than the other phases. Some empirical methods are used to calculate the Vickers hardnesses of the Si2N2O structures. We further estimate the Vickers hardnesses of the four Si2N2O crystal structures, suggesting all Si2N2O phases are not the superhard compounds. The results imply that the tetragonal Si2N2O is the hardest phase. The hardness of tetragonal Si2N2O is 31.52 GPa which is close to values of β-Si3N4 and γ-Si3N4.展开更多
The plane structure of bars jointed to a rigid-body is a complex and universal structure.Some other structure of bars can be considered as its special cases. Many material have different stress-strain relation in tens...The plane structure of bars jointed to a rigid-body is a complex and universal structure.Some other structure of bars can be considered as its special cases. Many material have different stress-strain relation in tension and compression, generally the relation is nonlinear. In this paper,we use the constitutive model of linearly elastic and power hardening of strength difference to analyze plane structure of bars. The displacement method is used to derive the universal expression of calculating stress and strain. The nonlinear equations for computing displacements of the rigid-body has been given and general computing program has been worked out. This problem has been solved satisfactorily.展开更多
基金Project(20131083) supported by the Doctoral Starting up Foundation of Liaoning Province,ClhinaProject(LT201304) supported by the Program for Liaoning Innovative Research Team in University,ChinaProject(2013201018) supported by the Key Technologies Research and Development Program of Liaoning Province,China
文摘The structural stability, electronic structures, elastic properties and thermodynamic properties of the main binary phases Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca in Mg-Al-Ca-Sn alloy were determined from the first-principles calculation. The calculated lattice parameters are in good agreement with the experimental and literature values. The calculated heats of formation and cohesive energies show that Al_2Ca has the strongest alloying ability and structural stability. The densities of states(DOS), Mulliken electron occupation number, metallicity and charge density difference of these compounds are given. The elastic constants of Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca phases are calculated, and the bulk moduli, shear moduli, elastic moduli and Poisson ratio are derived. The calculations of thermodynamic properties show that the Gibbs free energies of Al_2Ca and Mg_2 Sn are lower than that of Mg_(17)Al_(12), which indicates that Al_2Ca and Mg_2 Sn are more stable than Mg_(17)Al_(12) phase. Hence, the heat resistance of Mg-Al-based alloys can be improved by adding Ca and Sn additions.
基金Project (200805321032) supported by Doctoral Fund of Ministry of Education of ChinaProject (51071065) supported by the National Natural Science Foundation of ChinaProject (71075003) supported by the Science Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, China
文摘The electronic structures and mechanical properties of Al4Sr, Mg2Sr and Mg23Sr6 phases were determined by the use of first-principles calculations. The calculated heat of formation and cohesive energy indicate that Al4Sr has the strongest alloying ability as well as the highest structural stability. The elastic parameters were calculated, and then the bulk modulus, shear modulus, elastic modulus and Poisson ratio were derived. The ductility and plasticity were discussed. The results show that Al4Sr and Mg2Sr phases both are ductile, on the contrary, Mg23Sr6 is brittle, and among the three phases, Mg2Sr is a phase with the best plasticity.
基金Project (60571043) supported by the National Natural Science Foundation of ChinaProject (11JJ2002) supported by the Natural Science Foundation of Hunan Province, China
文摘The electronic structures, chemical bonding and elastic properties of the tetragonal phase BiOCuS were investigated by using density-functional theory (DFT) within generalized gradient approximation (GGA). The calculated energy band structures show that the tetragonal phase BiOCuS is an indirect semiconductor with the calculated band gap of about 0.503 eV. The density of states (DOS) and the partial density of states (PDOS) calculations show that the DOS near the Fermi level is mainly from the Cu-3d state. Population analysis suggests that the chemical bonding in BiOCuS has predominantly ionic character with mixed covalent-ionic character. Basic physical properties, such as lattice constant, bulk modulus, shear modulus, elastic constants, were calculated. The elastic modulus and Poisson ratio were also predicted. The results show that tetragonal phase BiOCuS is mechanically stable and behaves in a ductile manner.
基金Project(11271121)supported by the National Natural Science Foundation of ChinaProject(11JJ2002)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(11K038)supported by Key Laboratory of High Performance Computing and Stochastic Information Processing of Hunan Province,ChinaProject(2013GK3130)supported by the Scientific and Technological Plan Project of Hunan Province,China
文摘The electronic structures, chemical bonding and elastic properties of the Co2P-type structure phase ultra-incompressible Re2P (orthorhombic phase) were investigated by density-functional theory (DFT) within generalized gradient approximation (GGA). The calculated energy band structures show that the orthorhombic structure phase Re2P is metallic material. The density of state (DOS) and the partial density of state (PDOS) calculations show that the DOS near the Fermi level is mainly from the Re-5d state. Population analysis suggests that the chemical bonding in Re2P has predominantly covalent character with mixed covalent-ionic character. Basic physical properties, such as lattice constant, bulk modulus, shear modulus, and elastic constants Cij, were calculated. The elastic modulus and Poisson ratio were also predicted. The results show that the Co2P-type structure phase Re2P is mechanically stable and behaves in a brittle manner.
基金Project supported by the Construct Program of the Key Discipline in Hunan Province,ChinaAid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,China
文摘First-principle calculations with different exchange-correlation functionals, including LDA, PBE, and vd W-DF functional in the form of opt B88-vd W, have been performed to investigate the electronic and elastic properties of twodimensional transition metal dichalcogenides(TMDCs) with the formula of MX2(M = Mo, W; X = O, S, Se, Te) in both monolayer and bilayer structures. The calculated band structures show a direct band gap for monolayer TMDCs at the K point except for MoO2 and WO2. When the monolayers are stacked into a bilayer, the reduced indirect band gaps are found except for bilayer WTe2, in which the direct gap is still present at the K point. The calculated in-plane Young moduli are comparable to that of graphene, which promises possible application of TMDCs in future flexible and stretchable electronic devices. We also evaluated the performance of different functionals including LDA, PBE, and opt B88-vd W in describing elastic moduli of TMDCs and found that LDA seems to be the most qualified method. Moreover, our calculations suggest that the Young moduli for bilayers are insensitive to stacking orders and the mechanical coupling between monolayers seems to be negligible.
基金This work was financially supported by the National Natural Science Foundation of China(No.51401036)the Hunan Provincial Natural Science Foundation of China(No.14JJ3086),the Research Foundation of Education Bureau of Hunan Province(No.12B001)the Key Laboratory of Efficient and Clean Energy Utilization,College of Hunan Province(No.2015NGQ005).
文摘The phase stability,elastic properties and electronic structures of three typical Mg-Y intermetallics including Mg_(24)Y_(5),Mg_(2)Y and MgY are systematically investigated using first-principles calculations based on density functional theory.The optimized structural parameters including lattice constants and atomic coordinates are in good agreement with experimental values.The calculated cohesive energies and formation enthalpies show that either phase stability or alloying ability of the three intermetallics is gradually enhanced with increasing Y content.The single-crystal elastic constants C_(ij) of Mg-Y intermetallics are also calculated,and the bulk modulus B,shear modulus G,Young's modulus E,Poisson ratio v and anisotropy factor A of polycrystalline materials are derived.It is suggested that the resistances to volume and shear deformation as well as the stiffness of the three intermetallics are raised with increasing Y content.Besides,these intermetallics all exhibit ductile characteristics,and they are isotropic in compression but anisotropic to a certain degree in shear and stiffness.Comparatively,Mg_(24)Y_(5) presents a relatively higher ductility,while MgY has a relatively stronger anisotropy in shear and stiffness.Further analysis of electronic structures indicates that the phase stability of Mg-Y intermetallics is closely related with their bonding electrons numbers below Fermi level.Namely,the more bonding electrons number below Fermi level corresponds to the higher structural stability of Mg-Y intermetallics.
基金supported by the Explore Research Project of the General Armament Department (No. NHA13002)the Fundamental Research Funds for the Central Universities (No.NP2016412)the National Natural Science Foundation of China(No.51505261)
文摘Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,experimental research on mechanics characteristics of ME-wheel under steady-state cornering conditions are carried out.The test of steady-state cornering properties of ME-wheel at different experimental parameter conditions is conducted by test bench for dynamic mechanical properties of tyre.Cornering property curves are used to analyze the steady-state cornering properties of ME-wheel,namely the variation tendency of lateral force or aligning torque with the increase of side-slip angle.Moreover,evaluation indexes for cornering properties of ME-wheel are extracted and the effect of different experimental parameters(including vertical load,friction coefficient,and speed)on cornering properties of ME-wheel is contrastively analyzed.The proposed research can provide certain reference to facilitate structure parameters and cornering properties optimizing process of ME-wheel.
基金Funded by National Natural Science Foundation of China(Nos.U1134008 and 51302090)the Fundamental Research Funds for the Central Universities(No.2015ZJ0005)
文摘Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be satisfied by ordinary SCC. In this study, in order to solve the problem, a few principles of SCC design were proposed and the effects of binder amount, fly ash (FA) substitution, aggregate content and gradation on the workability, temperature rise, drying shrinkage and elastic modulus of SCC were investigated. The results and analysis indicate that the primary factor influencing the fluidity was paste content, and the main methods improving the elastic modulusof SCC were a lower sand ratio and an optimized coarse aggregate gradation. Lower adiabatic temperature rise and drying shrinkage were beneficial for decreasing the cement content. Further, based on the optimization of mixture, a C50 grade SCC (with binder amount of only 480 kg/ m3, fly ash substitution of 40%, sand ratio of 51% and proper coarse aggregate gradation (Vs.~0 mm: V10-16 ram: V16.20 mm= 30%: 30%:40%)) with superior workability was successfully prepared. The temperature rise and drying shrinkage of the prepared SCC were significantly reduced, and the elastic modulus reached 37.6 GPa at 28 d.
文摘The structural, elastic, and electronic properties of a series of lanthanide hexaborides(Ln B6) have been investigated by performing ab initio calculations based on the density functional theory using the Vienna ab initio simulation package.The calculated lattice and elastic constants of Ln B6 are in good agreement with the available experimental data and other theoretical results. The polycrystalline Young's modulus, shear modulus, the ratio of bulk to shear modulus B/G, Poisson's ratios, Zener anisotropy factors, as well as the Debye temperature are calculated, and all of the properties display some regularity with increasing atomic number of lanthanide atoms, whereas anomalies are observed for Eu B6 and Yb B6. In addition, detailed electronic structure calculations are carried out to shed light on the peculiar elastic properties of Ln B6.The total density of states demonstrates the existence of a pseudogap and indicates lower structure stability of Eu B6 and Yb B6 compared with others.
基金Project supported by the Science Fund from the Key Laboratory of Earthquake Prediction,Institute of Earthquake Science,China Earthquake Administration(Grant No.2016IES010104)the National Natural Science Foundation of China(Grant Nos.41174071,41273073,41373060,and 41573121)
文摘The structures and elasticities of phase B silicates with different water and iron(Fe) content are obtained by firstprinciples simulation to understand the effects of water and Fe on their properties under high pressure.The lattice constants a and b decrease with increasing water content.On the contrary,c increases with increasing water content.On the other hand,the b and c decrease with increasing Fe content while a increases with increasing Fe content.The decrease of M(metal)–O octahedral volume is greater than the decrease of SiO polyhedral volume over the same pressure range.The density,bulk modulus and shear modulus of phase B increase with increasing Fe content and decrease with increasing water content.The compressional wave velocity(Vp) and shear wave velocity(Vs) of phase B decrease with increasing water and Fe content.The comparisons of density and wave velocity between phase B silicate and the Earth typical structure provide the evidence for understanding the formation of the X-discontinuity zone of the mantle.
基金Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB22040502)the National Natural Science Foundation of China(No.11672285)and the Fundamental Research Funds for the Central Universities of China(No.WK2090050043)。
文摘The elastic stress distribution and the variation of the elastic energy with spacing between two inclusions of arbitrary sizes in an infinite isotropic cylindrical rod are obtained by an analytical approach and the phase field microelasticity(PFM)simulation.The results show a near-attraction and far-repulsion elastic interaction between two inclusions with hydrostatic dilatation.The critical spacing,at which the interaction changes from attraction to repulsion,is on the order of the radius of the rod,dependent on the length and Poisson’s ratio of inclusions.Furthermore,the elastic energy calculations and PFM simulation results indicate that applying the local radial stress on the rod surface can modulate the elastic interaction between inclusions and adjust the periodicity of the superlattice nanowire structure.This can provide some guidelines for the tunable construction of superlattice nanowire structures.
基金Projects(2016YFB07014042016YFB0701301)supported by the National Key Research and Development Program of China。
文摘This paper focused on the crystal structures of two new ternary phases,Ti(Cu,Pt)2 and Ti(Cu,Pt)3,which were studied by X-ray powder diffraction data using Rietveld method.Electron probe microanalysis was used for sample composition examination.Elastic properties of these phases were further measured by nano-indentation,and meanwhile calculated with first-principle(FP)calculations.It is found that the crystal structure of Ti(Cu,Pt)2 is of orthorhombic cell space group Amm2(No.38)with structural prototype of VAu2.The resolved structure of Ti(Cu,Pt)3 is of tetragonal Al Pt3 type,belonging to the space group P4/mmm(No.123).The nano-indentation measurement and FP calculations show that the elastic modulus of Ti(Cu,Pt)2 increases firstly then decreases with Pt content,whereas that of Ti(Cu,Pt)3almost linearly increases with Pt content.
基金the support of the National Natural Science Foundation of China(NSFC) for support under Grant No.51005217Dr. Chen is grateful for the support from China Postdoctoral Science Foundation Grant No.20100480677
文摘The electronic structures,elastic properties and thermodynamics of MgZn_2,Mg_2Y and Mg_2 La have been determined from the first-principle calculations.The calculated heats of formation and cohesive energies show that Mg_2La has the strongest alloying ability and structural stability.The structural stability mechanism is also explained through the electronic structures of these phases.The ionicity and metallicity of the phases are estimated.The elastic constants are calculated;the bulk moduli,shear moduli.Young's moduli,Poisson's ratio value and elastic anisotropy are derived:and the brittleness.plasticity and anisotropy of these phases are discussed.Gibbs free energy,Debye temperature and heat capacity are calculated and discussed.
文摘The resonance nuclear elastic scattering 16O(α,α) 16O at 3.045 MeV has been used to profile oxygen distributions in SOI material synthesised by SIMOX technique. The buried SiO2 layer is produced by 1.8×1018 at./cm2 oxygen implantation at 500℃ and high temperature annealing at 1405℃ for 30 min. The experimental results show that after annealing sharp SiO2/Si interfaces at both sides of buried layer and a very good quality of top Si single crystal layer are obtained. The formation mechanism of the buried layer, correlated with SiO2 precipitates and dissolution, radiation enhanced diffusion and epitaxial growth, is discussed.
基金supported by the Program for Science & Technology Innovation Talents in Universities of Henan Province of China (Grant No 2009HASTIT003)the Foundation of Science and Technology Department of Henan Province of China (Grant No 082300410010)Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China
文摘This paper studies the elastic and electronic structure properties of two new low-energy structures of PdN2 and PtN2 by first-principles calculations. It finds that tetragonal and monoclinic structures are more stable than a pyrite one. The always positive eigenvalues of the elastic constant matrix confirm that both the tetragonal and monoclinic structures are elastically stable. The origin of the low bulk modulus of the two structures is discussed. The results of the calculated density of states show that both of the two low-energy structures are metallic.
基金supported by the National Natural Science Foundation of China (Grant No. 10974041)the Key Project of Science and Technology for Colleges in Hebei Province,China (Grant No. ZD2010120)
文摘We investigate the electronic structure, chemical bonding and elastic properties of the hexagonal aluminum carbonitride, Al5C3N, by ab initio calculations. Al5C3N is a semiconductor with a narrow indirect gap of 0.81 eV. The valence bands below the Fermi level (EF) originate from the hybridized Al p-C p and A1 p-N p states. The calculated bulk and Young's moduli are 201 GPa and 292 GPa, which are slightly lower than those of Ti3SiC2. The values of the bulk-to-shear-modulus and bulk-modulus-to-c44 are 1.73 and 1.97, respectively, which are higher than those of Ti2AlC and Ti2AlN, indicating that Al5C3N is a ductile ceramic.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11404042 and 11604029)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20135122120010)the Open Research Fund of Computational Physics Key Laboratory of Sichuan Province,Yibin University(Grant No.JSWL2015KFZ02)
文摘The structures, elasticities, sound velocities, and electronic properties of anhydrous and hydrous fayalite (Fe2SiO4 and Fe1.75H0.5SiO4) under high pressure have been investigated by means of the density functional theory within the generalized gradient approximation (GGA) with the on-site Coulomb energy being taken into account (GGA+U). The optimized results show that H atoms prefer to substitute Fe atoms in the Fe1 site. Compared with the anhydrous fayalite Fe2SiO4, the mass density, elastic moduli, and sound velocities of Fe1.75H0.5SiO4 slightly decrease. According to our data, adding 2.3 wt% water into fayalite leads to reductions of compressional and shear wave velocities (VP and VS) by 3.4%-7.5% and 0.3%-3.4% at pressures from 0 GPa to 25 GPa, respectively, which are basically in agreement with the 2%-5% reductions of sound velocity obtained by the experimental measurement in the low velocity zones (LVZ). Based on the electronic structure, the valence and conduction bands are slightly broader for hydrous fayalite. However, hydrous fayalite keeps the insulation characteristics under the pressures up to 30 GPa, which indicates that hydration has little effect on its electronic structure.
文摘The structural, electronic and elastic properties of Rb As systems (RbAs in NaP, LiAs and AuCu structures, RbAs2 in the MgCu2 structure, Rb3As in NaaAs, Cu3P and Li3Bi structures, and Rb5As4 in the A5B4 structure) are investigated with the generalized gradient approximation in tile frame of density functional theory. The lattice parameters, cohesive energies, formation energies, bulk moduli and the first derivatives of the bulk moduli (to fit Murnaghan's equation of state) of the considered structures are calculated and reasonable agreement is obtained. In addition, the phase transition pressures are also predicted. The electronic band structures, the partial densities of states corresponding to the band structures and the charge density distributions are presented and analysed. The second-order elastic constants based on the stress-strain method and other related quantities such as Young's modulus, the shear modulus, Poisson's ratio, sound velocities, the Debye temperature and shear anisotropy factors are also estimated.
基金We thank the Institute of Solid State Physics &, the School of Physics and the Electronic Engineer- ing Department of Sichuan Normal University for the computational support.
文摘According to the density functional theory we systematically study the electronic structure, the mechanical prop- erties and the intrinsic hardness of Si2N2O polymorphs using the first-principles method. The elastic constants of four Si2N2O structures are obtained using the stress-strain method. The mechanical moduli (bulk modulus, Young’s mod-ulus, and shear modulus) are evaluated using the Voigt-Reuss-Hill approach. It is found that the tetragonal Si2N2O exhibits a larger mechanical modulus than the other phases. Some empirical methods are used to calculate the Vickers hardnesses of the Si2N2O structures. We further estimate the Vickers hardnesses of the four Si2N2O crystal structures, suggesting all Si2N2O phases are not the superhard compounds. The results imply that the tetragonal Si2N2O is the hardest phase. The hardness of tetragonal Si2N2O is 31.52 GPa which is close to values of β-Si3N4 and γ-Si3N4.
文摘The plane structure of bars jointed to a rigid-body is a complex and universal structure.Some other structure of bars can be considered as its special cases. Many material have different stress-strain relation in tension and compression, generally the relation is nonlinear. In this paper,we use the constitutive model of linearly elastic and power hardening of strength difference to analyze plane structure of bars. The displacement method is used to derive the universal expression of calculating stress and strain. The nonlinear equations for computing displacements of the rigid-body has been given and general computing program has been worked out. This problem has been solved satisfactorily.