Several disputes exist around Genetically Modified Organisms (GMOs). This article uses the concept of biopolitics to refer to all the GMO-related political issues and the mechanisms that are used to handle them. As ...Several disputes exist around Genetically Modified Organisms (GMOs). This article uses the concept of biopolitics to refer to all the GMO-related political issues and the mechanisms that are used to handle them. As a world famous genetically modified crop developed for the welfare of humanity by public institutions, Golden Rice has on one hand won glories, whereas on the other met with criticisms. It could be used as an analytical model to illustrate the biopolitics of GMOs. On the basis of an overview of its technological background, this article first introduces the participants and the debated issues of the Golden Rice project and then the disputes between the supporters and opponents and consequently analyzes the biopolitics of the Golden Rice. In conclusion, this article justifies the biopolitics of the GMOs and its doctrine.展开更多
Safety assessment of genetically modified organisms (GMOs) is a contentious topic. Proponents of GMOs assert that GMOs are safe since the FDA’s policy of substantial equivalence considers GMOs “equivalent” to their...Safety assessment of genetically modified organisms (GMOs) is a contentious topic. Proponents of GMOs assert that GMOs are safe since the FDA’s policy of substantial equivalence considers GMOs “equivalent” to their non-GMO counterparts, and argue that genetic modification (GM) is simply an extension of a “natural” process of plant breeding, a form of “genetic modification”, though done over longer time scales. Anti-GMO activists counter that GMOs are unsafe since substantial equivalence is unscientific and outdated since it originates in the 1970s to assess safety of medical devices, which are not comparable to the complexity of biological systems, and contend that targeted GM is not plant breeding. The heart of the debate appears to be on the methodology used to determine criteria for substantial equivalence. Systems biology, which aims to understand complexity of the whole organism, as a system, rather than just studying its parts in a reductionist manner, may provide a framework to determine appropriate criteria, as it recognizes that GM, small or large, may affect emergent properties of the whole system. Herein, a promising computational systems biology method couples known perturbations on five biomolecules caused by the CP4 EPSPS GM of Glycine max L. (soybean), with an integrative model of C1 metabolism and oxidative stress (two molecular systems critical to plant function). The results predict significant accumulation of formaldehyde and concomitant depletion of glutathione in the GMO, suggesting how a “small” and single GM creates “large” and systemic perturbations to molecular systems equilibria. Regulatory agencies, currently reviewing rules for GMO safety, may wish to adopt a systems biology approach using a combination of in silico, computational methods used herein, and subsequent targeted experimental in vitro and in vivo designs, to develop a systems understanding of “equivalence” using biomarkers, such as formaldehyde and glutathione, which predict metabolic disruptions, towards modernizing the safety assessment of GMOs.展开更多
In 2012, genetically engineered (GE) crops were grown by 17.3 million farmers on over 170 million hectares. Over 70% of harvested GE biomass is fed to food producing animals, making them the major consumers of GE cr...In 2012, genetically engineered (GE) crops were grown by 17.3 million farmers on over 170 million hectares. Over 70% of harvested GE biomass is fed to food producing animals, making them the major consumers of GE crops for the past 15 plus years. Prior to commercialization, GE crops go through an extensive regulatory evaluation. Over one hundred regulatory submissions have shown compositional equivalence, and comparable levels of safety, between GE crops and their conventional counterparts. One component of regulatory compliance is whole GE food/feed animal feeding studies. Both regulatory studies and independent peer-reviewed studies have shown that GE crops can be safely used in animal feed, and rDNA fragments have never been detected in products (e.g. milk, meat, eggs) derived from animals that consumed GE feed. Despite the fact that the scientific weight of evidence from these hundreds of studies have not revealed unique risks associated with GE feed, some groups are calling for more animal feeding studies, including long-term rodent studies and studies in target livestock species for the approval of GE crops. It is an opportune time to review the results of such studies as have been done to date to evaluate the value of the additional information obtained. Requiring long-term and target animal feeding studies would sharply increase regulatory compliance costs and prolong the regulatory process associated with the commercialization of GE crops. Such costs may impede the development of feed crops with enhanced nutritional characteristics and durability, particularly in the local varieties in small and poor developing countries. More generally it is time for regulatory evaluations to more explicitly consider both the reasonable and unique risks and benefits associated with the use of both GE plants and animals in agricultural systems, and weigh them against those associated with existing systems, and those of regulatory inaction. This would represent a shift away from a GE evaluation process that currently focuses only on risk assessment and identifying ever diminishing marginal hazards, to a regulatory approach that more objectively evaluates and communicates the likely impact of approving a new GE plant or animal on agricultural production systems.展开更多
While teaching a course on Crop Biotechnology at Huazhong Agricultural University (Wuhan, Hubei Province, China) this past October, I was asked by one of my students if it is true that American farmers grow genetica...While teaching a course on Crop Biotechnology at Huazhong Agricultural University (Wuhan, Hubei Province, China) this past October, I was asked by one of my students if it is true that American farmers grow genetically modified crops (GMOs) only for export, and that GMO-foods are not sold in the USA. The student implied that Americans thought that such crops were "good enough" for developing countries but not good enough for themselves.展开更多
Synthetic biotechnology has led to the widespread application of genetically modified organisms(GMOs)in biochemistry, bioenergy, and therapy. However, the uncontrolled spread of GMOs may lead to genetic contamination ...Synthetic biotechnology has led to the widespread application of genetically modified organisms(GMOs)in biochemistry, bioenergy, and therapy. However, the uncontrolled spread of GMOs may lead to genetic contamination by horizontal gene transfer, resulting in unpredictable biosafety risks. To deal with these challenges, many effective methods have been developed for biocontainment. In this article, we summarize and discuss recent advances in biocontainment strategies from three aspects: DNA replication, transcriptional regulation, and protein translation. We also briefly introduce the efforts in the biocontainment convention, such as the recent publication of the Tianjin Biosecurity Guidelines for the Code of Conduct for Scientists.展开更多
基于SMIC 0.18μm RF CMOS工艺,采用双负反馈结构设计了一款2.4 GHz的功率放大器。该功率放大器由驱动级和功率输出级2级组成,利用片上电感实现了级间的阻抗变换。仿真结果表明,电路在工作频率范围内,功率增益为24 d B,输出1 d B压缩点...基于SMIC 0.18μm RF CMOS工艺,采用双负反馈结构设计了一款2.4 GHz的功率放大器。该功率放大器由驱动级和功率输出级2级组成,利用片上电感实现了级间的阻抗变换。仿真结果表明,电路在工作频率范围内,功率增益为24 d B,输出1 d B压缩点为23 d Bm,峰值功率附加效率为40%。展开更多
基金Acknowlegements This research is supported by National Social Science Foundation of China (04CFX004).
文摘Several disputes exist around Genetically Modified Organisms (GMOs). This article uses the concept of biopolitics to refer to all the GMO-related political issues and the mechanisms that are used to handle them. As a world famous genetically modified crop developed for the welfare of humanity by public institutions, Golden Rice has on one hand won glories, whereas on the other met with criticisms. It could be used as an analytical model to illustrate the biopolitics of GMOs. On the basis of an overview of its technological background, this article first introduces the participants and the debated issues of the Golden Rice project and then the disputes between the supporters and opponents and consequently analyzes the biopolitics of the Golden Rice. In conclusion, this article justifies the biopolitics of the GMOs and its doctrine.
文摘Safety assessment of genetically modified organisms (GMOs) is a contentious topic. Proponents of GMOs assert that GMOs are safe since the FDA’s policy of substantial equivalence considers GMOs “equivalent” to their non-GMO counterparts, and argue that genetic modification (GM) is simply an extension of a “natural” process of plant breeding, a form of “genetic modification”, though done over longer time scales. Anti-GMO activists counter that GMOs are unsafe since substantial equivalence is unscientific and outdated since it originates in the 1970s to assess safety of medical devices, which are not comparable to the complexity of biological systems, and contend that targeted GM is not plant breeding. The heart of the debate appears to be on the methodology used to determine criteria for substantial equivalence. Systems biology, which aims to understand complexity of the whole organism, as a system, rather than just studying its parts in a reductionist manner, may provide a framework to determine appropriate criteria, as it recognizes that GM, small or large, may affect emergent properties of the whole system. Herein, a promising computational systems biology method couples known perturbations on five biomolecules caused by the CP4 EPSPS GM of Glycine max L. (soybean), with an integrative model of C1 metabolism and oxidative stress (two molecular systems critical to plant function). The results predict significant accumulation of formaldehyde and concomitant depletion of glutathione in the GMO, suggesting how a “small” and single GM creates “large” and systemic perturbations to molecular systems equilibria. Regulatory agencies, currently reviewing rules for GMO safety, may wish to adopt a systems biology approach using a combination of in silico, computational methods used herein, and subsequent targeted experimental in vitro and in vivo designs, to develop a systems understanding of “equivalence” using biomarkers, such as formaldehyde and glutathione, which predict metabolic disruptions, towards modernizing the safety assessment of GMOs.
基金support from National Research Initiative Competitive Grant no.2009-55205-05057Agriculture and Food Research Initiative Competitive Grant no.2011-68004-30367 and 2013-68004-20364 from the USDA National Institute of Food and Agriculturesupported by funds from the W.K.Kellogg endowment to the UC Davis Department of Animal Science
文摘In 2012, genetically engineered (GE) crops were grown by 17.3 million farmers on over 170 million hectares. Over 70% of harvested GE biomass is fed to food producing animals, making them the major consumers of GE crops for the past 15 plus years. Prior to commercialization, GE crops go through an extensive regulatory evaluation. Over one hundred regulatory submissions have shown compositional equivalence, and comparable levels of safety, between GE crops and their conventional counterparts. One component of regulatory compliance is whole GE food/feed animal feeding studies. Both regulatory studies and independent peer-reviewed studies have shown that GE crops can be safely used in animal feed, and rDNA fragments have never been detected in products (e.g. milk, meat, eggs) derived from animals that consumed GE feed. Despite the fact that the scientific weight of evidence from these hundreds of studies have not revealed unique risks associated with GE feed, some groups are calling for more animal feeding studies, including long-term rodent studies and studies in target livestock species for the approval of GE crops. It is an opportune time to review the results of such studies as have been done to date to evaluate the value of the additional information obtained. Requiring long-term and target animal feeding studies would sharply increase regulatory compliance costs and prolong the regulatory process associated with the commercialization of GE crops. Such costs may impede the development of feed crops with enhanced nutritional characteristics and durability, particularly in the local varieties in small and poor developing countries. More generally it is time for regulatory evaluations to more explicitly consider both the reasonable and unique risks and benefits associated with the use of both GE plants and animals in agricultural systems, and weigh them against those associated with existing systems, and those of regulatory inaction. This would represent a shift away from a GE evaluation process that currently focuses only on risk assessment and identifying ever diminishing marginal hazards, to a regulatory approach that more objectively evaluates and communicates the likely impact of approving a new GE plant or animal on agricultural production systems.
文摘While teaching a course on Crop Biotechnology at Huazhong Agricultural University (Wuhan, Hubei Province, China) this past October, I was asked by one of my students if it is true that American farmers grow genetically modified crops (GMOs) only for export, and that GMO-foods are not sold in the USA. The student implied that Americans thought that such crops were "good enough" for developing countries but not good enough for themselves.
基金supported by grants from the National Key Research and Development Program of China (2019YFA0903800)the National Natural Science Foundation of China (31800719 and 21621004)。
文摘Synthetic biotechnology has led to the widespread application of genetically modified organisms(GMOs)in biochemistry, bioenergy, and therapy. However, the uncontrolled spread of GMOs may lead to genetic contamination by horizontal gene transfer, resulting in unpredictable biosafety risks. To deal with these challenges, many effective methods have been developed for biocontainment. In this article, we summarize and discuss recent advances in biocontainment strategies from three aspects: DNA replication, transcriptional regulation, and protein translation. We also briefly introduce the efforts in the biocontainment convention, such as the recent publication of the Tianjin Biosecurity Guidelines for the Code of Conduct for Scientists.
文摘基于SMIC 0.18μm RF CMOS工艺,采用双负反馈结构设计了一款2.4 GHz的功率放大器。该功率放大器由驱动级和功率输出级2级组成,利用片上电感实现了级间的阻抗变换。仿真结果表明,电路在工作频率范围内,功率增益为24 d B,输出1 d B压缩点为23 d Bm,峰值功率附加效率为40%。