Aiming at the problem of long time-consuming and low accuracy of existing age estimation approaches,a new age estimation method using Gabor feature fusion,and an improved atomic search algorithm for feature selection ...Aiming at the problem of long time-consuming and low accuracy of existing age estimation approaches,a new age estimation method using Gabor feature fusion,and an improved atomic search algorithm for feature selection is proposed.Firstly,texture features of five scales and eight directions in the face region are extracted by Gabor wavelet transform.The statistical histogram is introduced to encode and fuse the directional index with the largest feature value on Gabor scales.Secondly,a new hybrid feature selection algorithm chaotic improved atom search optimisation with simulated annealing(CIASO-SA)is presented,which is based on an improved atomic search algorithm and the simulated annealing algorithm.Besides,the CIASO-SA algorithm introduces a chaos mechanism during atomic initialisation,significantly improving the convergence speed and accuracy of the algorithm.Finally,a support vector machine(SVM)is used to get classification results of the age group.To verify the performance of the proposed algorithm,face images with three resolutions in the Adience dataset are tested.Using the Gabor real part fusion feature at 48�48 resolution,the average accuracy and 1-off accuracy of age classification exhibit a maximum of 60.4%and 85.9%,respectively.Obtained results prove the superiority of the proposed algorithm over the state-of-the-art methods,which is of great referential value for application to the mobile terminals.展开更多
A novel face recognition method, which is a fusion of muhi-modal face parts based on Gabor feature (MMP-GF), is proposed in this paper. Firstly, the bare face image detached from the normalized image was convolved w...A novel face recognition method, which is a fusion of muhi-modal face parts based on Gabor feature (MMP-GF), is proposed in this paper. Firstly, the bare face image detached from the normalized image was convolved with a family of Gabor kernels, and then according to the face structure and the key-points locations, the calculated Gabor images were divided into five parts: Gabor face, Gabor eyebrow, Gabor eye, Gabor nose and Gabor mouth. After that multi-modal Gabor features were spatially partitioned into non-overlapping regions and the averages of regions were concatenated to be a low dimension feature vector, whose dimension was further reduced by principal component analysis (PCA). In the decision level fusion, match results respectively calculated based on the five parts were combined according to linear discriminant analysis (LDA) and a normalized matching algorithm was used to improve the performance. Experiments on FERET database show that the proposed MMP-GF method achieves good robustness to the expression and age variations.展开更多
Hepatic computed tomography(CT) images with Gabor function were analyzed.Then a threshold-based classification scheme was proposed using Gabor features and proceeded with the retrieval of the hepatic CT images.In our ...Hepatic computed tomography(CT) images with Gabor function were analyzed.Then a threshold-based classification scheme was proposed using Gabor features and proceeded with the retrieval of the hepatic CT images.In our experiments, a batch of hepatic CT images containing several types of CT findings was used and compared with the Zhao's image classification scheme, support vector machines(SVM) scheme and threshold-based scheme.展开更多
In order to improve the Mandarin vowel pronunciation quality assessment, a nox/el formant feature was proposed and applied to formant classification for Chinese Mandarin vowel pronunciation quality evaluation. Formant...In order to improve the Mandarin vowel pronunciation quality assessment, a nox/el formant feature was proposed and applied to formant classification for Chinese Mandarin vowel pronunciation quality evaluation. Formant candidates of each frame were plotted on the time-frequency plane to form a bitmap, and its Gabor feature was extracted to represent the formant trajectory. The feature was then classified by using GMM model and the classification posterior probability was mapped to pronunciation quality grade. The experiments of comparing the Gabor transformation based formant trajectory feature with several other kinds of traditionally used features show that with this method, a human-machine scoring correlation coefficient (CC) of 0.842 can be achieved, which is better than the result of 0.832 by traditional speech recognition techniques. At the same time, considering that the long-term information of formant classification and the short-term information of speech recognition technique are complementary to each other, it is investigated to combine their results with linear or nonlinear methods to further improve the evaluation performance. As a result, experiments on PSK show that the best CC of 0.913, which is very close to the correlation of inter-human rating of 0.94, is gotten by using neural network.展开更多
In order to decrease vehicle crashes, a new rear view vehicle detection system based on monocular vision is designed. First, a small and flexible hardware platform based on a DM642 digtal signal processor (DSP) micr...In order to decrease vehicle crashes, a new rear view vehicle detection system based on monocular vision is designed. First, a small and flexible hardware platform based on a DM642 digtal signal processor (DSP) micro-controller is built. Then, a two-step vehicle detection algorithm is proposed. In the first step, a fast vehicle edge and symmetry fusion algorithm is used and a low threshold is set so that all the possible vehicles have a nearly 100% detection rate (TP) and the non-vehicles have a high false detection rate (FP), i. e., all the possible vehicles can be obtained. In the second step, a classifier using a probabilistic neural network (PNN) which is based on multiple scales and an orientation Gabor feature is trained to classify the possible vehicles and eliminate the false detected vehicles from the candidate vehicles generated in the first step. Experimental results demonstrate that the proposed system maintains a high detection rate and a low false detection rate under different road, weather and lighting conditions.展开更多
A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective....A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective. A new three-layer detection method was proposed to detect and identify white-backed planthoppers (WBPHs, Sogatella furcifera (Horvath)) and their developmental stages using image processing. In the first two detection layers, we used an AdaBoost classifier that was trained on a histogram of oriented gradient (HOG) features and a support vector machine (SVM) classifier that was trained on Gabor and Local Binary Pattern (LBP) features to detect WBPHs and remove impurities. We achieved a detection rate of 85.6% and a false detection rate of 10.2%. In the third detection layer, a SVM classifier that was trained on the HOG features was used to identify the different developmental stages of the WBPHs, and we achieved an identification rate of 73.1%, a false identification rate of 23.3%, and a 5.6% false detection rate for the images without WBPHs. The proposed three-layer detection method is feasible and effective for the identification of different developmental stages of planthoppers on rice plants in paddy fields.展开更多
When using AdaBoost to select discriminant features from some feature space (e.g. Gabor feature space) for face recognition, cascade structure is usually adopted to leverage the asymmetry in the distribution of positi...When using AdaBoost to select discriminant features from some feature space (e.g. Gabor feature space) for face recognition, cascade structure is usually adopted to leverage the asymmetry in the distribution of positive and negative samples. Each node in the cascade structure is a classifier trained by AdaBoost with an asymmetric learning goal of high recognition rate but only moderate low false positive rate. One limitation of AdaBoost arises in the context of skewed example distribution and cascade classifiers: AdaBoost minimizes the classification error, which is not guaranteed to achieve the asymmetric node learning goal. In this paper, we propose to use the asymmetric AdaBoost (Asym- Boost) as a mechanism to address the asymmetric node learning goal. Moreover, the two parts of the selecting features and forming ensemble classifiers are decoupled, both of which occur simultaneously in AsymBoost and AdaBoost. Fisher Linear Discriminant Analysis (FLDA) is used on the selected fea- tures to learn a linear discriminant function that maximizes the separability of data among the different classes, which we think can improve the recognition performance. The proposed algorithm is dem- onstrated with face recognition using a Gabor based representation on the FERET database. Ex- perimental results show that the proposed algorithm yields better recognition performance than AdaBoost itself.展开更多
A fusion method of Gabor features and (2D)~2LDA for face feature extraction is proposed in this paper. Gabor filters are utilized to extract multi-direction and multi-scale features from facial image to employ its rob...A fusion method of Gabor features and (2D)~2LDA for face feature extraction is proposed in this paper. Gabor filters are utilized to extract multi-direction and multi-scale features from facial image to employ its robust performance for illumination,expressional variability and other factors. The extracted features have the defect of high dimension and redundancy data.(2D)~2LDA is implemented to reduce the dimension of Gabor features and select effective feature data. Finally, the nearest neighbor classifier is used to classify characteristics and complete face recognition. The experiments are implemented by using ORL database and Yale database respectively. The experimental results show that the proposed method significantly reduces the dimension of Gabor features and decrease the influence of other factors. The proposed method acquires excellent recognition accuracy and has light architectures as well.展开更多
Gabor filters are generally regarded as the most bionic filters corresponding to the visual perception of human. Their filtered coefficients thus are widely utilized to represent the texture information of irises. How...Gabor filters are generally regarded as the most bionic filters corresponding to the visual perception of human. Their filtered coefficients thus are widely utilized to represent the texture information of irises. However, these wavelet-based iris representations are inevitably being misaligned in iris matching stage. In this paper, we try to improve the characteristics of bionic Gabor representations of each iris via combining the local Gabor features and the key-point descriptors of Scale Invariant Feature Transformation (SIFT), which respectively simulate the process of visual object class recognition in frequency and spatial domains. A localized approach of Gabor features is used to avoid the blocking effect in the process of image division, meanwhile a SIFT key point selection strategy is provided to remove the noises and probable misaligned key points. For the combination of these iris features, we propose a support vector regression based fusion rule, which may fuse their matching scores to a scalar score to make classification decision. The experiments on three public and self-developed iris datasets validate the discriminative ability of our multiple bionic iris features, and also demonstrate that the fusion system outperforms some state-of-the-art methods.展开更多
With ever-increasing miniaturization and prominence of micro- and nano-scale materials and systems for engineering, func- tional and biological applications, understanding of the mechanical and thermal behavior of the...With ever-increasing miniaturization and prominence of micro- and nano-scale materials and systems for engineering, func- tional and biological applications, understanding of the mechanical and thermal behavior of the nano- and micro-scale mate- rials/systems becomes critical to the development of technologies. Issues concerning mechanical and thermal response and reliability pervade a wide range of areas, from bulk materials to thin films, from crystalline materials to amorphous materials,展开更多
文摘Aiming at the problem of long time-consuming and low accuracy of existing age estimation approaches,a new age estimation method using Gabor feature fusion,and an improved atomic search algorithm for feature selection is proposed.Firstly,texture features of five scales and eight directions in the face region are extracted by Gabor wavelet transform.The statistical histogram is introduced to encode and fuse the directional index with the largest feature value on Gabor scales.Secondly,a new hybrid feature selection algorithm chaotic improved atom search optimisation with simulated annealing(CIASO-SA)is presented,which is based on an improved atomic search algorithm and the simulated annealing algorithm.Besides,the CIASO-SA algorithm introduces a chaos mechanism during atomic initialisation,significantly improving the convergence speed and accuracy of the algorithm.Finally,a support vector machine(SVM)is used to get classification results of the age group.To verify the performance of the proposed algorithm,face images with three resolutions in the Adience dataset are tested.Using the Gabor real part fusion feature at 48�48 resolution,the average accuracy and 1-off accuracy of age classification exhibit a maximum of 60.4%and 85.9%,respectively.Obtained results prove the superiority of the proposed algorithm over the state-of-the-art methods,which is of great referential value for application to the mobile terminals.
基金Supported by the National Key Technology R&D Program (No. 2006BAK08B07)
文摘A novel face recognition method, which is a fusion of muhi-modal face parts based on Gabor feature (MMP-GF), is proposed in this paper. Firstly, the bare face image detached from the normalized image was convolved with a family of Gabor kernels, and then according to the face structure and the key-points locations, the calculated Gabor images were divided into five parts: Gabor face, Gabor eyebrow, Gabor eye, Gabor nose and Gabor mouth. After that multi-modal Gabor features were spatially partitioned into non-overlapping regions and the averages of regions were concatenated to be a low dimension feature vector, whose dimension was further reduced by principal component analysis (PCA). In the decision level fusion, match results respectively calculated based on the five parts were combined according to linear discriminant analysis (LDA) and a normalized matching algorithm was used to improve the performance. Experiments on FERET database show that the proposed MMP-GF method achieves good robustness to the expression and age variations.
基金the National Natural Science Foundation of China (No. 30770589)
文摘Hepatic computed tomography(CT) images with Gabor function were analyzed.Then a threshold-based classification scheme was proposed using Gabor features and proceeded with the retrieval of the hepatic CT images.In our experiments, a batch of hepatic CT images containing several types of CT findings was used and compared with the Zhao's image classification scheme, support vector machines(SVM) scheme and threshold-based scheme.
基金Project(61062011)supported by the National Natural Science Foundation of ChinaProject(2010GXNSFA013128)supported by the Natural Science Foundation of Guangxi Province,China
文摘In order to improve the Mandarin vowel pronunciation quality assessment, a nox/el formant feature was proposed and applied to formant classification for Chinese Mandarin vowel pronunciation quality evaluation. Formant candidates of each frame were plotted on the time-frequency plane to form a bitmap, and its Gabor feature was extracted to represent the formant trajectory. The feature was then classified by using GMM model and the classification posterior probability was mapped to pronunciation quality grade. The experiments of comparing the Gabor transformation based formant trajectory feature with several other kinds of traditionally used features show that with this method, a human-machine scoring correlation coefficient (CC) of 0.842 can be achieved, which is better than the result of 0.832 by traditional speech recognition techniques. At the same time, considering that the long-term information of formant classification and the short-term information of speech recognition technique are complementary to each other, it is investigated to combine their results with linear or nonlinear methods to further improve the evaluation performance. As a result, experiments on PSK show that the best CC of 0.913, which is very close to the correlation of inter-human rating of 0.94, is gotten by using neural network.
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(2009BAG13A04)Jiangsu Transportation Science Research Program(No.08X09)Program of Suzhou Science and Technology(No.SG201076)
文摘In order to decrease vehicle crashes, a new rear view vehicle detection system based on monocular vision is designed. First, a small and flexible hardware platform based on a DM642 digtal signal processor (DSP) micro-controller is built. Then, a two-step vehicle detection algorithm is proposed. In the first step, a fast vehicle edge and symmetry fusion algorithm is used and a low threshold is set so that all the possible vehicles have a nearly 100% detection rate (TP) and the non-vehicles have a high false detection rate (FP), i. e., all the possible vehicles can be obtained. In the second step, a classifier using a probabilistic neural network (PNN) which is based on multiple scales and an orientation Gabor feature is trained to classify the possible vehicles and eliminate the false detected vehicles from the candidate vehicles generated in the first step. Experimental results demonstrate that the proposed system maintains a high detection rate and a low false detection rate under different road, weather and lighting conditions.
基金financially supported by the National High Technology Research and Development Program of China (863 Program, 2013AA102402)the 521 Talent Project of Zhejiang Sci-Tech University, Chinathe Key Research and Development Program of Zhejiang Province, China (2015C03023)
文摘A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective. A new three-layer detection method was proposed to detect and identify white-backed planthoppers (WBPHs, Sogatella furcifera (Horvath)) and their developmental stages using image processing. In the first two detection layers, we used an AdaBoost classifier that was trained on a histogram of oriented gradient (HOG) features and a support vector machine (SVM) classifier that was trained on Gabor and Local Binary Pattern (LBP) features to detect WBPHs and remove impurities. We achieved a detection rate of 85.6% and a false detection rate of 10.2%. In the third detection layer, a SVM classifier that was trained on the HOG features was used to identify the different developmental stages of the WBPHs, and we achieved an identification rate of 73.1%, a false identification rate of 23.3%, and a 5.6% false detection rate for the images without WBPHs. The proposed three-layer detection method is feasible and effective for the identification of different developmental stages of planthoppers on rice plants in paddy fields.
基金Supported by the NSFC-RGC Joint Research Fund (No.60518002)Talent Promotion Foundation of Anhui Province (No.2004Z026)The Science Research Fund of MOE-Microsoft Key Laboratory of Multimedia Com-puting and Communication (No.05071811)
文摘When using AdaBoost to select discriminant features from some feature space (e.g. Gabor feature space) for face recognition, cascade structure is usually adopted to leverage the asymmetry in the distribution of positive and negative samples. Each node in the cascade structure is a classifier trained by AdaBoost with an asymmetric learning goal of high recognition rate but only moderate low false positive rate. One limitation of AdaBoost arises in the context of skewed example distribution and cascade classifiers: AdaBoost minimizes the classification error, which is not guaranteed to achieve the asymmetric node learning goal. In this paper, we propose to use the asymmetric AdaBoost (Asym- Boost) as a mechanism to address the asymmetric node learning goal. Moreover, the two parts of the selecting features and forming ensemble classifiers are decoupled, both of which occur simultaneously in AsymBoost and AdaBoost. Fisher Linear Discriminant Analysis (FLDA) is used on the selected fea- tures to learn a linear discriminant function that maximizes the separability of data among the different classes, which we think can improve the recognition performance. The proposed algorithm is dem- onstrated with face recognition using a Gabor based representation on the FERET database. Ex- perimental results show that the proposed algorithm yields better recognition performance than AdaBoost itself.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61172167)the Natural Science Foundation of Heilongjiang Province of China(Grant No.F201311)
文摘A fusion method of Gabor features and (2D)~2LDA for face feature extraction is proposed in this paper. Gabor filters are utilized to extract multi-direction and multi-scale features from facial image to employ its robust performance for illumination,expressional variability and other factors. The extracted features have the defect of high dimension and redundancy data.(2D)~2LDA is implemented to reduce the dimension of Gabor features and select effective feature data. Finally, the nearest neighbor classifier is used to classify characteristics and complete face recognition. The experiments are implemented by using ORL database and Yale database respectively. The experimental results show that the proposed method significantly reduces the dimension of Gabor features and decrease the influence of other factors. The proposed method acquires excellent recognition accuracy and has light architectures as well.
文摘Gabor filters are generally regarded as the most bionic filters corresponding to the visual perception of human. Their filtered coefficients thus are widely utilized to represent the texture information of irises. However, these wavelet-based iris representations are inevitably being misaligned in iris matching stage. In this paper, we try to improve the characteristics of bionic Gabor representations of each iris via combining the local Gabor features and the key-point descriptors of Scale Invariant Feature Transformation (SIFT), which respectively simulate the process of visual object class recognition in frequency and spatial domains. A localized approach of Gabor features is used to avoid the blocking effect in the process of image division, meanwhile a SIFT key point selection strategy is provided to remove the noises and probable misaligned key points. For the combination of these iris features, we propose a support vector regression based fusion rule, which may fuse their matching scores to a scalar score to make classification decision. The experiments on three public and self-developed iris datasets validate the discriminative ability of our multiple bionic iris features, and also demonstrate that the fusion system outperforms some state-of-the-art methods.
文摘With ever-increasing miniaturization and prominence of micro- and nano-scale materials and systems for engineering, func- tional and biological applications, understanding of the mechanical and thermal behavior of the nano- and micro-scale mate- rials/systems becomes critical to the development of technologies. Issues concerning mechanical and thermal response and reliability pervade a wide range of areas, from bulk materials to thin films, from crystalline materials to amorphous materials,