The wide use of manganese dioxide(MnO_(2))as an electrode in all-solid-state asymmetric supercapacitors(ASCs)remains challenging because of its low electrical conductivity.This complication can be circumvented by intr...The wide use of manganese dioxide(MnO_(2))as an electrode in all-solid-state asymmetric supercapacitors(ASCs)remains challenging because of its low electrical conductivity.This complication can be circumvented by introducing trivalent gadolinium(Gd)ions into the MnO_(2).Herein,we describe the successful hydrothermal synthesis of crystalline Gd-doped MnO_(2) nanorods with Ni(OH)_(2) nanosheets as cathode,which we combined with Fe_(3)O_(4)/GO nanospheres as anode for all-solid-state ASCs.Electrochemical tests dem on strate that Gd dopi ng sign ifica ntly affected the electrochemical activities of the MnO_(2),which was further enhanced by introducing Ni(OH)_(2).The GdMnO_(2)/Ni(OH)_(2) electrode offers sufficient surface electrochemical activity and exhibits excellent specific capacity of 121.8 mA h g^(-1),at 1A g^(-1),appealing rate performance,and ultralong lifetime stability(99.3%retention after 10,000 discharge tests).Furthermore,the GdMnO_(2)/Ni(OH)_(2)//PVA/KOH//Fe_(3)O_(4)/GO solid-state ASC device offers an impressive specific energy density(60.25 W h kg^(-1))at a high power density(2332 W kg^(-1)).This investigation thus shows its large potential in developing novel approaches to energy storage devices.展开更多
As a typical family of volatile toxic compounds,benzene derivatives are massive emission in industrial production and the automobile field,causing serious threat to human and environment.The reliable and convenient de...As a typical family of volatile toxic compounds,benzene derivatives are massive emission in industrial production and the automobile field,causing serious threat to human and environment.The reliable and convenient detection of low concentration benzene derivatives based on intelligent gas sensor is urgent and of great significance for environmental protection.Herein,through heteroatomic doping engineering,rare-earth gadolinium(Gd)doped mesoporous WO_(3)with uniform mesopores(15.7–18.1 nm),tunable high specific surface area(52–55 m^(2)·g^(−1)),customized crystalline pore walls,was designed and utilized to fabricate highly sensitive gas sensors toward benzene derivatives,such as ethylbenzene.Thanks to the high-density oxygen vacancies(OV)and significantly increased defects(W^(5+))produced by Gd atoms doping into the lattice of WO_(3)octahedron,Gd-doped mesoporous WO_(3)exhibited excellent ethylbenzene sensing performance,including high response(237 vs.50 ppm),rapid response–recovery dynamic(13 s/25 s vs.50 ppm),extremely low theoretical detection limit of 24 ppb.The in-situ diffuse reflectance infrared Fourier transform and gas chromatograph-mass spectrometry results revealed the gas sensing process underwent a catalytic oxidation conversion of ethylbenzene into alcohol species,benzaldehyde,acetophenone,and carboxylate species along with the resistance change of the Gd-doped mesoporous WO_(3)based sensor.Moreover,a portable smart gas sensing module was fabricated and demonstrated for real-time detecting ethylbenzene,which provided new ideas to design heteroatom doped mesoporous materials for intelligent sensors.展开更多
Solid oxide electrolysis cells(SOECs)provide a promising way for converting renewable energy into chemical fuels.Traditionally,NiO/CGO(nickel-gadolinium doped ceria)cermet has shown its excellent properties in ionic a...Solid oxide electrolysis cells(SOECs)provide a promising way for converting renewable energy into chemical fuels.Traditionally,NiO/CGO(nickel-gadolinium doped ceria)cermet has shown its excellent properties in ionic and electronic conductivity under reducing conditions.Herein,we developed a novel 1D NiO/CGO cathode through a cerium metal-organic framework(MOF)derived process.The cathode’s 1D nanostructure integrated with a microchannel scaffold facilitates enhanced mass transport,providing vertically aligned pathways for CO_(2)and H_(2)O diffusion.Additionally,the 1D framework increases the number of interfacial sites and reduces ion diffusion distances,thereby simplifying electron/ion transport.Consequently,this advanced cathode achieved a significant breakthrough in SOEC performance,maintaining efficient CO_(2)and H_(2)O electrolysis at an extraordinary current density of 1.41 A/cm^(2)at 1.5 V and excellent stability over 24 h at 850℃.The enhanced performance of this newly developed cathode not only achieves a remarkable 100%improvement compared to those of NiO/CGO cathodes with varying geometrical configurations but also surpasses those of commercial NiO/CGO catalysts by an outstanding 40%when tested under identical conditions.The development of the 1D NiO/CGO enhances the efficiency and durability of ceramic cathodes for CO_(2)and H_(2)O co-electrolysis in SOECs and improves the scalability and effectiveness of SOECs in renewable energy applications.展开更多
Gadolinium doped titania materials were explored for application in photoenergy production. Incorporation of gadolinium into titania permitted improvement of photocatalytic or photovoltaic performance of the latter. T...Gadolinium doped titania materials were explored for application in photoenergy production. Incorporation of gadolinium into titania permitted improvement of photocatalytic or photovoltaic performance of the latter. This review provided a deep analysis of gadolinium applications in photoenergy processes and devices with the main focus on explanation of gadolinium doping effect on physicochemical properties of titania.展开更多
Inorganic nanoparticles have been introduced into biological systems as useful probes for in vitro diagnosis and in vivo imaging, due to their relatively small size and exceptional physical and chemical properties. A ...Inorganic nanoparticles have been introduced into biological systems as useful probes for in vitro diagnosis and in vivo imaging, due to their relatively small size and exceptional physical and chemical properties. A new kind of color- tunable Gd-Zn-Cu-In-S/ZnS (GZCIS/ZnS) quantum dots (QDs) with stable crystal structure has been successfully synthesized and utilized for magnetic resonance (MR) and fluorescence dual modality imaging. This strategy allows successful fabrication of GZCIS/ZnS QDs by incorporating Gd into ZCIS/ZnS QDs to achieve great MR enhancement without compromising the fluorescence properties of the initial ZCIS/ZnS QDs. The as-prepared GZCIS/ZnS QDs show high T1 MR contrast as well as "color-tunable" photoluminescence (PL) in the range of 550-725 nm by adjusting the Zn/Cu feeding ratio with high PL quantum yield (QY). The GZCIS/ZnS QDs were transferred into water via a bovine serum albumin (BSA) coating strategy. The resulting Cd-free GZCIS/ZnS QDs reveal negligible cytotoxicity on both HeLa and A549 cells. Both fluorescence and MR imaging studies were successfully performed in vitro and in vivo. The results demonstrated that GZCIS/ZnS QDs could be a dual-modal contrast agent to simultaneously produce strong MR contrast enhancement as well as fluorescence emission for in vivo imaging.展开更多
基金the National Research Foundation of Korea(NRF),the Ministry of education,Korea(Project No.NRF2020R1F1A1061754)。
文摘The wide use of manganese dioxide(MnO_(2))as an electrode in all-solid-state asymmetric supercapacitors(ASCs)remains challenging because of its low electrical conductivity.This complication can be circumvented by introducing trivalent gadolinium(Gd)ions into the MnO_(2).Herein,we describe the successful hydrothermal synthesis of crystalline Gd-doped MnO_(2) nanorods with Ni(OH)_(2) nanosheets as cathode,which we combined with Fe_(3)O_(4)/GO nanospheres as anode for all-solid-state ASCs.Electrochemical tests dem on strate that Gd dopi ng sign ifica ntly affected the electrochemical activities of the MnO_(2),which was further enhanced by introducing Ni(OH)_(2).The GdMnO_(2)/Ni(OH)_(2) electrode offers sufficient surface electrochemical activity and exhibits excellent specific capacity of 121.8 mA h g^(-1),at 1A g^(-1),appealing rate performance,and ultralong lifetime stability(99.3%retention after 10,000 discharge tests).Furthermore,the GdMnO_(2)/Ni(OH)_(2)//PVA/KOH//Fe_(3)O_(4)/GO solid-state ASC device offers an impressive specific energy density(60.25 W h kg^(-1))at a high power density(2332 W kg^(-1)).This investigation thus shows its large potential in developing novel approaches to energy storage devices.
基金the National Key R&D Program of China(No.2020YFB2008600)the National Natural Science Foundation of China(Nos.21875044,22125501,and 22105043)+4 种基金the Key Basic Research Program of Science and Technology Commission of Shanghai Municipality(No.20JC1415300)the China Postdoctoral Science Foundation(Nos.2021TQ0066 and 2021M690660)the Fundamental Research Funds for the Central Universities(No.20720220010)the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,the young scientist project of MOE innovation platform,Donghua University(No.KF2120)the Foshan Science and Technology Innovation Program(No.2017IT100121).
文摘As a typical family of volatile toxic compounds,benzene derivatives are massive emission in industrial production and the automobile field,causing serious threat to human and environment.The reliable and convenient detection of low concentration benzene derivatives based on intelligent gas sensor is urgent and of great significance for environmental protection.Herein,through heteroatomic doping engineering,rare-earth gadolinium(Gd)doped mesoporous WO_(3)with uniform mesopores(15.7–18.1 nm),tunable high specific surface area(52–55 m^(2)·g^(−1)),customized crystalline pore walls,was designed and utilized to fabricate highly sensitive gas sensors toward benzene derivatives,such as ethylbenzene.Thanks to the high-density oxygen vacancies(OV)and significantly increased defects(W^(5+))produced by Gd atoms doping into the lattice of WO_(3)octahedron,Gd-doped mesoporous WO_(3)exhibited excellent ethylbenzene sensing performance,including high response(237 vs.50 ppm),rapid response–recovery dynamic(13 s/25 s vs.50 ppm),extremely low theoretical detection limit of 24 ppb.The in-situ diffuse reflectance infrared Fourier transform and gas chromatograph-mass spectrometry results revealed the gas sensing process underwent a catalytic oxidation conversion of ethylbenzene into alcohol species,benzaldehyde,acetophenone,and carboxylate species along with the resistance change of the Gd-doped mesoporous WO_(3)based sensor.Moreover,a portable smart gas sensing module was fabricated and demonstrated for real-time detecting ethylbenzene,which provided new ideas to design heteroatom doped mesoporous materials for intelligent sensors.
基金supported by the National Natural Science Foundation of China(Nos.22275121,21931005,22105122,52272265)the National Key R&D Program of China(No.2023YFA1506300)+1 种基金the Shanghai Municipal Science and Technology Major Project of China,the Open Foundation Commission of Shaoxing Research Institute of Renewable Energy and Molecular Engineering,China(No.JDSX2022038)the Project of Jiangxi Academy of Sciences,China(No.2023YSTZX01).
文摘Solid oxide electrolysis cells(SOECs)provide a promising way for converting renewable energy into chemical fuels.Traditionally,NiO/CGO(nickel-gadolinium doped ceria)cermet has shown its excellent properties in ionic and electronic conductivity under reducing conditions.Herein,we developed a novel 1D NiO/CGO cathode through a cerium metal-organic framework(MOF)derived process.The cathode’s 1D nanostructure integrated with a microchannel scaffold facilitates enhanced mass transport,providing vertically aligned pathways for CO_(2)and H_(2)O diffusion.Additionally,the 1D framework increases the number of interfacial sites and reduces ion diffusion distances,thereby simplifying electron/ion transport.Consequently,this advanced cathode achieved a significant breakthrough in SOEC performance,maintaining efficient CO_(2)and H_(2)O electrolysis at an extraordinary current density of 1.41 A/cm^(2)at 1.5 V and excellent stability over 24 h at 850℃.The enhanced performance of this newly developed cathode not only achieves a remarkable 100%improvement compared to those of NiO/CGO cathodes with varying geometrical configurations but also surpasses those of commercial NiO/CGO catalysts by an outstanding 40%when tested under identical conditions.The development of the 1D NiO/CGO enhances the efficiency and durability of ceramic cathodes for CO_(2)and H_(2)O co-electrolysis in SOECs and improves the scalability and effectiveness of SOECs in renewable energy applications.
文摘Gadolinium doped titania materials were explored for application in photoenergy production. Incorporation of gadolinium into titania permitted improvement of photocatalytic or photovoltaic performance of the latter. This review provided a deep analysis of gadolinium applications in photoenergy processes and devices with the main focus on explanation of gadolinium doping effect on physicochemical properties of titania.
文摘Inorganic nanoparticles have been introduced into biological systems as useful probes for in vitro diagnosis and in vivo imaging, due to their relatively small size and exceptional physical and chemical properties. A new kind of color- tunable Gd-Zn-Cu-In-S/ZnS (GZCIS/ZnS) quantum dots (QDs) with stable crystal structure has been successfully synthesized and utilized for magnetic resonance (MR) and fluorescence dual modality imaging. This strategy allows successful fabrication of GZCIS/ZnS QDs by incorporating Gd into ZCIS/ZnS QDs to achieve great MR enhancement without compromising the fluorescence properties of the initial ZCIS/ZnS QDs. The as-prepared GZCIS/ZnS QDs show high T1 MR contrast as well as "color-tunable" photoluminescence (PL) in the range of 550-725 nm by adjusting the Zn/Cu feeding ratio with high PL quantum yield (QY). The GZCIS/ZnS QDs were transferred into water via a bovine serum albumin (BSA) coating strategy. The resulting Cd-free GZCIS/ZnS QDs reveal negligible cytotoxicity on both HeLa and A549 cells. Both fluorescence and MR imaging studies were successfully performed in vitro and in vivo. The results demonstrated that GZCIS/ZnS QDs could be a dual-modal contrast agent to simultaneously produce strong MR contrast enhancement as well as fluorescence emission for in vivo imaging.