The aperture phase taper due to quadratic phase errors in the principal planes of a rectangular horn imposes signifi-cant constraints on the on-axis far-field gain of the horn. The precise calculation of gain reductio...The aperture phase taper due to quadratic phase errors in the principal planes of a rectangular horn imposes signifi-cant constraints on the on-axis far-field gain of the horn. The precise calculation of gain reduction involves Fresnel integrals;therefore, exact results are obtained only from numerical methods. However, in horns’ analysis and design, simple closed-form expressions are often required for the description of horn-gain. This paper provides a set of simple polynomial approximations that adequately describe the gain reduction factors of pyramidal and sectoral horns. The proposed formulas are derived using least-squares polynomial regression analysis and they are valid for a broad range of quadratic phase error values. Numerical results verify the accuracy of the derived expressions. Application examples and comparisons with methods in the literature demonstrate the efficacy of the approach.展开更多
应用于汽车雷达上的喇叭天线或透镜天线,为了获得高增益和高方向性,其长度或口面一般较大。为了保持口面大小不变,并且能有效缩短喇叭天线长度来减小体积、节约成本,文中设计了超材料平面透镜喇叭天线。采用此超材料的天线增益相比同尺...应用于汽车雷达上的喇叭天线或透镜天线,为了获得高增益和高方向性,其长度或口面一般较大。为了保持口面大小不变,并且能有效缩短喇叭天线长度来减小体积、节约成本,文中设计了超材料平面透镜喇叭天线。采用此超材料的天线增益相比同尺寸的普通喇叭天线增加了1.5 d B。进而,通过对喇叭口面的相位分析,采用了一种改进结构,该改进结构的增益相比同尺寸的普通喇叭天线增加了2.3 d B,与同增益同口径面积的普通喇叭天线相比长度缩短了44%。实测结果表明,该超材料喇叭天线能提高喇叭天线2.5 d B左右的增益。展开更多
利用微波暗室、矢量网络分析仪、角锥喇叭天线以及电脑等设备建立了一套喇叭天线测量系统;采用两相同天线法,分别测量了4~6 GHz、6~8 GHz角锥喇叭天线的增益值,对测量数据进行误差分析和近距修正;并将增益的实测值与理论计算值进行对比...利用微波暗室、矢量网络分析仪、角锥喇叭天线以及电脑等设备建立了一套喇叭天线测量系统;采用两相同天线法,分别测量了4~6 GHz、6~8 GHz角锥喇叭天线的增益值,对测量数据进行误差分析和近距修正;并将增益的实测值与理论计算值进行对比。实验结果表明,近距修正后,所测量的4~6 GHz与6~8 GHz频段天线的增益实测值与理论值的最大偏差值分别为-0.20 d B和-0.19 d B,均在±0.25 d B范围内,符合标准增益天线增益的精度要求,也与天线出厂的指标相符,表明所建立的测量系统对于喇叭天线增益的测量有效可行。展开更多
文摘The aperture phase taper due to quadratic phase errors in the principal planes of a rectangular horn imposes signifi-cant constraints on the on-axis far-field gain of the horn. The precise calculation of gain reduction involves Fresnel integrals;therefore, exact results are obtained only from numerical methods. However, in horns’ analysis and design, simple closed-form expressions are often required for the description of horn-gain. This paper provides a set of simple polynomial approximations that adequately describe the gain reduction factors of pyramidal and sectoral horns. The proposed formulas are derived using least-squares polynomial regression analysis and they are valid for a broad range of quadratic phase error values. Numerical results verify the accuracy of the derived expressions. Application examples and comparisons with methods in the literature demonstrate the efficacy of the approach.
文摘应用于汽车雷达上的喇叭天线或透镜天线,为了获得高增益和高方向性,其长度或口面一般较大。为了保持口面大小不变,并且能有效缩短喇叭天线长度来减小体积、节约成本,文中设计了超材料平面透镜喇叭天线。采用此超材料的天线增益相比同尺寸的普通喇叭天线增加了1.5 d B。进而,通过对喇叭口面的相位分析,采用了一种改进结构,该改进结构的增益相比同尺寸的普通喇叭天线增加了2.3 d B,与同增益同口径面积的普通喇叭天线相比长度缩短了44%。实测结果表明,该超材料喇叭天线能提高喇叭天线2.5 d B左右的增益。
文摘利用微波暗室、矢量网络分析仪、角锥喇叭天线以及电脑等设备建立了一套喇叭天线测量系统;采用两相同天线法,分别测量了4~6 GHz、6~8 GHz角锥喇叭天线的增益值,对测量数据进行误差分析和近距修正;并将增益的实测值与理论计算值进行对比。实验结果表明,近距修正后,所测量的4~6 GHz与6~8 GHz频段天线的增益实测值与理论值的最大偏差值分别为-0.20 d B和-0.19 d B,均在±0.25 d B范围内,符合标准增益天线增益的精度要求,也与天线出厂的指标相符,表明所建立的测量系统对于喇叭天线增益的测量有效可行。