Based on a novel shape memory alloy (SMA) actuator, a micro worming robot is presented. The robot adopts a wheeled moving mechanism. The principle of the robot's enlarged pace is introduced, and the structure and m...Based on a novel shape memory alloy (SMA) actuator, a micro worming robot is presented. The robot adopts a wheeled moving mechanism. The principle of the robot's enlarged pace is introduced, and the structure and motion mechanism of the SMA actuator and the wheeled moving mechanism are discussed. The gait about the robot's rectilinear movement and turning movement is also planned. Under the effect of the eccentric wheel self-locking mechanisms and changing-direction mechanisms, the robot can move forward and backward, and turn actively, which overcomes the disadvantages of the traditional SMA micro robots to a certain extent. Furthermore, some experiments on the heating current of the SMA actuator and the robot's motion capability are carded out.展开更多
In order to fulfill the goal of autonomous walking on rough terrain,a distributed gait planningmethod applied to hexapod biomimetic robot locomotion is proposed based on the research effort of gait co-ordination mecha...In order to fulfill the goal of autonomous walking on rough terrain,a distributed gait planningmethod applied to hexapod biomimetic robot locomotion is proposed based on the research effort of gait co-ordination mechanism of stick insect.The mathematical relation of walking velocity and gait pattern wasdepicted,a set of local rules operating between adjacent legs were put forward,and a distributed networkof local rules for gait control was constructed.With the interaction of adjacent legs,adaptive adjustmentof phase sequence fluctuation of walking legs resulting from change of terrain conditions or variety of walk-ing speed was implemented to generate statically stable gait.In the simulation experiments,adaptive ad-justment of inter-leg phase sequence and smooth transition of velocity and gait pattern were realized,andstatic stableness was ensured simultaneously,which provided the hexapod robot with the capability ofwalking on rough terrain stably and expeditiously.展开更多
In order to solve kinematic redundancy problems of a hydraulic quadruped walking robot,which include leg dragging,sliding,impingement against the ground,an improved gait planning algorithm for this robot is proposed i...In order to solve kinematic redundancy problems of a hydraulic quadruped walking robot,which include leg dragging,sliding,impingement against the ground,an improved gait planning algorithm for this robot is proposed in this paper.First,the foot trajectory is designated as the improved composite cycloid foot trajectory.Second,the landing angle of each leg of the robot is controlled to satisfy friction cone to improve the stability performance of the robot.Then with the controllable landing angle of quadruped robot and a geometry method,the kinematic equation is derived in this paper.Finally,agait planning method of quadruped robot is proposed,a dynamic co-simulation is done with ADAMS and MATLAB,and practical experiments are conducted.The validity of the proposed algorithm is confirmed through the co-simulation and experimentation.The results show that the robot can avoid sliding,reduce impingement,and trot stably in trot gait.展开更多
We present a method for designing free gaits for a structurally symmetrical quadruped robot capable of performing statically stable, omnidirectional walking on irregular terrain. The robot's virtual model is construc...We present a method for designing free gaits for a structurally symmetrical quadruped robot capable of performing statically stable, omnidirectional walking on irregular terrain. The robot's virtual model is constructed and a control algorithm is proposed by applying virtual components at some strategic locations. The deliberative-based controller can generate flexible sequences of leg transferences while maintaining walking speed, and choose optimum foothold for moving leg based on integration data of exteroceptive terrain profile. Simulation results are presented to show the gait's efficiency and system's stability in adapting to an uncertain terrain.展开更多
In this paper, two important problems in the gait planning of dynamic walking of biped robot, i.e., finding inverse kinematic solution and constructing joint trajectories, are studied in detail by adopting complex opt...In this paper, two important problems in the gait planning of dynamic walking of biped robot, i.e., finding inverse kinematic solution and constructing joint trajectories, are studied in detail by adopting complex optimization theory. The optimization algorithm for finding the inverse kinematic solution is developed, the construction method of joint trajectories is given, and the gait planning method of dynamic walking of biped robots is proposed.展开更多
Gait planning based on linear inverted pendulum (LIPM) on structured road surface can be quickly generated because of the simple model and definite physical meaning. However, over-simplifi- cation of the model and dis...Gait planning based on linear inverted pendulum (LIPM) on structured road surface can be quickly generated because of the simple model and definite physical meaning. However, over-simplifi- cation of the model and discontents of zero velocity and acceleration boundary conditions when robot starts and stops walking lead to obvious difference between the model and the real robot. In this paper, parameterized gait is planned and trajectories’ smoothness of each joint angle and centroid are ensured using the 3-D LIPM theory. Static walking method is used to satisfy zero velocity and acceleration boundary conditions. Besides, a multi-link model is built to validate the stability. Simulation experiments show that: despite of some deviation from the theoretical solution, the actual zero-moment point (ZMP) is still within the support polygon, and the robot walks steadily. In consequence, the rationality and validity of model simplification of LIPM is demonstrated.展开更多
Soft climbing/crawling robots have been attracting increasing attention in the soft robotics community,and many prototypes with basic locomotion have been implemented.Most existing soft robots achieve locomotion by pl...Soft climbing/crawling robots have been attracting increasing attention in the soft robotics community,and many prototypes with basic locomotion have been implemented.Most existing soft robots achieve locomotion by planar bending deformation and lack sufficient mobility.Enhancing the mobility of soft climbing/crawling robots is still an open and challenging issue.To this end,we present a novel pneumatic leech-like soft robot,Leechbot,with both bending and stretching deformation for locomotion.With a morphological structure,the robot consists of a three-chambered actuator in the middle for the main motion,two chamber-net actuators that act as ankles,and two suckers at the ends for anchoring on surfaces.The peristaltic motion for locomotion is implemented by body stretching,and direction changing is achieved by body bending.Due to the novel design and two deformation modes,the robot can make turns and transit between different surfaces;the robot,hence,has excellent mobility.The development of the robot prototype is presented in detail in this paper.To control its motion,tests were carried out to determine the relationship between step length and air pressure as well as the relationship between motion speed and periodic delay time.A kinematic model was established,and the kinematic mobility and surface transitionability were analyzed.Gait planning based on the inflating sequence of the actuating chambers is presented for straight crawling,turn making,and transiting between surfaces and was verified by a series of experiments with the prototype.The results show that a high mobility in soft climbing/crawling robots can be achieved by a novel design and by proper gait planning.展开更多
Assistive lower limb exoskeleton robot has been developed to help paraplegic patients walk again.A gait planning method of this robot must be able to plan a gait based on gait parameters,which can be changed during th...Assistive lower limb exoskeleton robot has been developed to help paraplegic patients walk again.A gait planning method of this robot must be able to plan a gait based on gait parameters,which can be changed during the stride according to human intention or walking conditions.The gait is usually planned in cartesian space,which has shortcomings such as singularities that may occur in inverse kinematics equations,and the angular velocity of the joints cannot be entered into the calculations.Therefore,it is vital to have a gait planning method in the joint space.In this paper,a minimum-time and minimum-jerk planner is proposed for the robot joints.To do so,a third-order system is defined,and the cost function is introduced to minimize the jerk of the joints throughout the stride.The minimum time required is calculated to keep the angular velocity trajectory within the range specified by the motor’s maximum speed.Boundary conditions of the joints are determined to secure backward balance and fulfill gait parameters.Finally,the proposed gait planning method is tested by its implementation on the Exoped®exoskeleton.展开更多
In this paper an experiment of human locomotion was carried out using a motion capture system to extract the human gait features. The modifiable key gait parameters affecting the dominant performance of biped robot wa...In this paper an experiment of human locomotion was carried out using a motion capture system to extract the human gait features. The modifiable key gait parameters affecting the dominant performance of biped robot walking were obtained from the extracted human gait features. Based on the modifiable key gait parameters and the Allowable Zero Moment Point (ZMP) Variation Region (AZR), we proposed an effective Bio-inspired Gait Planning (BGP) and control scheme for biped robot to- wards a given travel distance D. First, we construct an on-line Bio-inspired Gait Synthesis algorithm (BGSN) to generate a complete walking gait motion using the modifiable key gait parameters. Second, a Bio-inspired Gait Parameters Optimization algorithm (BGPO) is established to minimize the energy consumption of all actuators and guarantee biped robot walking with certain walking stability margin. Third, the necessary controllers for biped robot were introduced in briefly. Simulation and experiment results demonstrated the effectiveness of the proposed method, and the gait control system was implemented on DRC-XT humanoid robot.展开更多
In order to improve the walking stability and obstacle jumping ability of the robot on the slope,the goat was taken as the bionic prototype,a kind of bionic goat quadruped robot has been designed.By the bionic princip...In order to improve the walking stability and obstacle jumping ability of the robot on the slope,the goat was taken as the bionic prototype,a kind of bionic goat quadruped robot has been designed.By the bionic principle,the mechanical structure of the quadruped robot was designed,and the Denavit-Hartenberg(D-H)method was used to build the kinematic model,through which the forward and inverse kinematics of the robot was calculated,thus the equations of velocity and acceleration of the joint angle change were obtained during the quadruped robot motion,providing control theory foundation for robots.During walk gait planning,a low contact compact foot trajectory planning method using a high order polynomial curve was used to carry out the foot trajectory planning of the robot for the swing phase and stance phase.Through MATLAB software simulation,the simulation results of MATLAB software showed that the trajectory of the foot of the quadruped robot was semi-elliptic in a gait cycle,which were basically consistent with the foot trajectory obtained from the previous goat slope walking test.Therefore,the simulation results by MATLAB software showed that the foot trajectory was reasonable.Based on this,a gait plan was carried out,and the sequence of the lift leg steps of the robot was obtained.The test platform for the whole machine was built.The results showed that the height of the leg of the quadruped robot was 7.37 cm,and the length of the gait was 28.40 cm.Compared with the planned average gait length S=30 cm and average step height H=7 cm,the error of the leg height and the gait length was 5.28%and 5.33%,respectively.The designed gait planning achieved the expected results.The knee joint angle varied from 126.3°to 156.1°,and the hip joint angle varied from 103.9°to 138.4°.The changes in the joint angle of the quadruped robot could prove the correctness of the foot motion trajectory planning,which will provide a theoretical basis for the structural design and gait planning of the quadruped robot.展开更多
Based on the ZMP(zero moment point)trajectory and the walking data of human,a new method is proposed to improve the robot walking smoothness as well as to save energy.Firstly,a measurement system is designed to measur...Based on the ZMP(zero moment point)trajectory and the walking data of human,a new method is proposed to improve the robot walking smoothness as well as to save energy.Firstly,a measurement system is designed to measure the data of humans including the ZMP trajectory and the waist trajectory.Secondly,a new gait planning method which includes presetting the allowable ZMP region is proposed through analyzing human data.Thirdly,the new planning method is applied to the multi-link model based gait planning method.Finally,the feasibility of the proposed method is verified by simulation and experiments.展开更多
Realistically there are many robot joints in the biologically inspired hexapod robot, so they will generate many complexities in the calculations of the gait and the path planning and the control variables. The softwa...Realistically there are many robot joints in the biologically inspired hexapod robot, so they will generate many complexities in the calculations of the gait and the path planning and the control variables. The software Solidworks and MSC. ADAMS are adopted to simulate and analyze the prototype model of the robot. By the simulations used in our design, the applicability of the tripod gait is validated, and the scheme which uses cubic spline curve as the endpoint of foot's path is feasible. The principles, methods, and processes of the simulation of hexapod robot are illustrated. A methodology is proposed to get the robot inverse solution in ADAMS, and to simplify the theoretical calculation, and further more to improve the efficiency of the design.展开更多
In this paper,we propose a new gait planning method for a multi-legged robot which has only 1 degree-of-freedom in each leg and has a passive body joint between two body segments.We firstly introduce the Finite State ...In this paper,we propose a new gait planning method for a multi-legged robot which has only 1 degree-of-freedom in each leg and has a passive body joint between two body segments.We firstly introduce the Finite State Machine(FSM)to the undulatory gait planning method of the 2n-legged robot.Then,the undulatory gait sequence for straight line motion is achieved by undulations motion.The idea that legged locomotion is achievable by less actuation of 2n-legged robot as well as the gait planning methods are verified finally by simulations and experiments.展开更多
This paper presents an effective way to support motion planning of legged mobile robots—Inverted Modelling,based on the equivalent metamorphic mechanism concept.The difference from the previous research is that we he...This paper presents an effective way to support motion planning of legged mobile robots—Inverted Modelling,based on the equivalent metamorphic mechanism concept.The difference from the previous research is that we herein invert the equivalent parallel mechanism.Assuming the leg mechanisms are hybrid links,the body of robot being considered as fixed platform,and ground as moving platform.The motion performance is transformed and measured in the body frame.Terrain and joint limits are used as input parameters to the model,resulting in the representation which is independent of terrains and particular poses in Inverted Modelling.Hence,it can universally be applied to any kind of legged robots as global motion performance framework.Several performance measurements using Inverted Modelling are presented and used in motion performance evaluation.According to the requirements of actual work like motion continuity and stability,motion planning of legged robot can be achieved using different measurements on different terrains.Two cases studies present the simulations of quadruped and hexapod robots walking on rugged roads.The results verify the correctness and effectiveness of the proposed method.展开更多
In order to reduce the labor intensity of high-altitude workers and realize the cleaning and maintenance of high-rise building exteriors,this paper proposes a design for a 4-DOF bipedal wall-climbing bionic robot insp...In order to reduce the labor intensity of high-altitude workers and realize the cleaning and maintenance of high-rise building exteriors,this paper proposes a design for a 4-DOF bipedal wall-climbing bionic robot inspired by the inchworm’s movement.The robot utilizes vacuum adsorption for vertical wall attachment and legged movement for locomotion.To enhance the robot’s movement efficiency and reduce wear on the adsorption device,a gait mimicking an inchworm’s movement is planned,and foot trajectory planning is performed using a quintic polynomial function.Under velocity constraints,foot trajectory optimization is achieved using an improved Particle Swarm Optimization(PSO)algorithm,determining the quintic polynomial function with the best fitness through simulation.Finally,through comparative experiments,the climbing time of the robot closely matches the simulation results,validating the trajectory planning method’s accuracy.展开更多
文摘Based on a novel shape memory alloy (SMA) actuator, a micro worming robot is presented. The robot adopts a wheeled moving mechanism. The principle of the robot's enlarged pace is introduced, and the structure and motion mechanism of the SMA actuator and the wheeled moving mechanism are discussed. The gait about the robot's rectilinear movement and turning movement is also planned. Under the effect of the eccentric wheel self-locking mechanisms and changing-direction mechanisms, the robot can move forward and backward, and turn actively, which overcomes the disadvantages of the traditional SMA micro robots to a certain extent. Furthermore, some experiments on the heating current of the SMA actuator and the robot's motion capability are carded out.
基金Supported by the National High Technology Research and Development Programme of China (No. 2006AA04Z245)by the Progran for Changjiang Scholars and Innovative Research Team in University of China (PCSIRT) (IRT0423)
文摘In order to fulfill the goal of autonomous walking on rough terrain,a distributed gait planningmethod applied to hexapod biomimetic robot locomotion is proposed based on the research effort of gait co-ordination mechanism of stick insect.The mathematical relation of walking velocity and gait pattern wasdepicted,a set of local rules operating between adjacent legs were put forward,and a distributed networkof local rules for gait control was constructed.With the interaction of adjacent legs,adaptive adjustmentof phase sequence fluctuation of walking legs resulting from change of terrain conditions or variety of walk-ing speed was implemented to generate statically stable gait.In the simulation experiments,adaptive ad-justment of inter-leg phase sequence and smooth transition of velocity and gait pattern were realized,andstatic stableness was ensured simultaneously,which provided the hexapod robot with the capability ofwalking on rough terrain stably and expeditiously.
基金Supported by National High Technology Research and Development Program of China(863 Program)(2011AA041002)
文摘In order to solve kinematic redundancy problems of a hydraulic quadruped walking robot,which include leg dragging,sliding,impingement against the ground,an improved gait planning algorithm for this robot is proposed in this paper.First,the foot trajectory is designated as the improved composite cycloid foot trajectory.Second,the landing angle of each leg of the robot is controlled to satisfy friction cone to improve the stability performance of the robot.Then with the controllable landing angle of quadruped robot and a geometry method,the kinematic equation is derived in this paper.Finally,agait planning method of quadruped robot is proposed,a dynamic co-simulation is done with ADAMS and MATLAB,and practical experiments are conducted.The validity of the proposed algorithm is confirmed through the co-simulation and experimentation.The results show that the robot can avoid sliding,reduce impingement,and trot stably in trot gait.
基金supported by the Science and Technology Innovation Fund for the Doctor
文摘We present a method for designing free gaits for a structurally symmetrical quadruped robot capable of performing statically stable, omnidirectional walking on irregular terrain. The robot's virtual model is constructed and a control algorithm is proposed by applying virtual components at some strategic locations. The deliberative-based controller can generate flexible sequences of leg transferences while maintaining walking speed, and choose optimum foothold for moving leg based on integration data of exteroceptive terrain profile. Simulation results are presented to show the gait's efficiency and system's stability in adapting to an uncertain terrain.
文摘In this paper, two important problems in the gait planning of dynamic walking of biped robot, i.e., finding inverse kinematic solution and constructing joint trajectories, are studied in detail by adopting complex optimization theory. The optimization algorithm for finding the inverse kinematic solution is developed, the construction method of joint trajectories is given, and the gait planning method of dynamic walking of biped robots is proposed.
文摘Gait planning based on linear inverted pendulum (LIPM) on structured road surface can be quickly generated because of the simple model and definite physical meaning. However, over-simplifi- cation of the model and discontents of zero velocity and acceleration boundary conditions when robot starts and stops walking lead to obvious difference between the model and the real robot. In this paper, parameterized gait is planned and trajectories’ smoothness of each joint angle and centroid are ensured using the 3-D LIPM theory. Static walking method is used to satisfy zero velocity and acceleration boundary conditions. Besides, a multi-link model is built to validate the stability. Simulation experiments show that: despite of some deviation from the theoretical solution, the actual zero-moment point (ZMP) is still within the support polygon, and the robot walks steadily. In consequence, the rationality and validity of model simplification of LIPM is demonstrated.
基金supported by the National Natural Science Foundation of China(Grant no.51975126)the China Postdoctoral Science Foundation(Grant no.2021M700882)+1 种基金the Frontier and Key Technology Innovation Funds of Guangdong Province(Grant no.2017B050506008)the Guangdong Yangfan Program for Innovative and Entrepreneurial Teams(Grant no.2017YT05G026).
文摘Soft climbing/crawling robots have been attracting increasing attention in the soft robotics community,and many prototypes with basic locomotion have been implemented.Most existing soft robots achieve locomotion by planar bending deformation and lack sufficient mobility.Enhancing the mobility of soft climbing/crawling robots is still an open and challenging issue.To this end,we present a novel pneumatic leech-like soft robot,Leechbot,with both bending and stretching deformation for locomotion.With a morphological structure,the robot consists of a three-chambered actuator in the middle for the main motion,two chamber-net actuators that act as ankles,and two suckers at the ends for anchoring on surfaces.The peristaltic motion for locomotion is implemented by body stretching,and direction changing is achieved by body bending.Due to the novel design and two deformation modes,the robot can make turns and transit between different surfaces;the robot,hence,has excellent mobility.The development of the robot prototype is presented in detail in this paper.To control its motion,tests were carried out to determine the relationship between step length and air pressure as well as the relationship between motion speed and periodic delay time.A kinematic model was established,and the kinematic mobility and surface transitionability were analyzed.Gait planning based on the inflating sequence of the actuating chambers is presented for straight crawling,turn making,and transiting between surfaces and was verified by a series of experiments with the prototype.The results show that a high mobility in soft climbing/crawling robots can be achieved by a novel design and by proper gait planning.
文摘Assistive lower limb exoskeleton robot has been developed to help paraplegic patients walk again.A gait planning method of this robot must be able to plan a gait based on gait parameters,which can be changed during the stride according to human intention or walking conditions.The gait is usually planned in cartesian space,which has shortcomings such as singularities that may occur in inverse kinematics equations,and the angular velocity of the joints cannot be entered into the calculations.Therefore,it is vital to have a gait planning method in the joint space.In this paper,a minimum-time and minimum-jerk planner is proposed for the robot joints.To do so,a third-order system is defined,and the cost function is introduced to minimize the jerk of the joints throughout the stride.The minimum time required is calculated to keep the angular velocity trajectory within the range specified by the motor’s maximum speed.Boundary conditions of the joints are determined to secure backward balance and fulfill gait parameters.Finally,the proposed gait planning method is tested by its implementation on the Exoped®exoskeleton.
基金Acknowledgment This research has been supported by Project of Science and Technology Support Plan of Jiangsu province (Grant No. BE2012057) and Science and Technology Support Plan Key Projects of Jiangsu province (Grant No. BE2013003) and National Nature Science Foundation of China (Grant No. 51405469).
文摘In this paper an experiment of human locomotion was carried out using a motion capture system to extract the human gait features. The modifiable key gait parameters affecting the dominant performance of biped robot walking were obtained from the extracted human gait features. Based on the modifiable key gait parameters and the Allowable Zero Moment Point (ZMP) Variation Region (AZR), we proposed an effective Bio-inspired Gait Planning (BGP) and control scheme for biped robot to- wards a given travel distance D. First, we construct an on-line Bio-inspired Gait Synthesis algorithm (BGSN) to generate a complete walking gait motion using the modifiable key gait parameters. Second, a Bio-inspired Gait Parameters Optimization algorithm (BGPO) is established to minimize the energy consumption of all actuators and guarantee biped robot walking with certain walking stability margin. Third, the necessary controllers for biped robot were introduced in briefly. Simulation and experiment results demonstrated the effectiveness of the proposed method, and the gait control system was implemented on DRC-XT humanoid robot.
基金The authors acknowledge that this research was supported by the National Key Research and Development Program of China project(Grant No.2017YFD0301106)the National Natural Science Foundation of China(Grant No.52075149,51675163)+2 种基金the Open Project Program of Key Laboratory of Modern Agricultural Equipment and Technology,Ministry of Education and High-tech Key Laboratory of Agricultural Equipment&Intelligentization of Jiangsu Province(Grant No.JNZ201901)the Colleges and Universities of Henan Province Youth Backbone Teacher Training Program(Grant No.2017GGJS062)the Postgraduate Education Reform Project of Henan Province(Grant No.2019SJGLX063Y).
文摘In order to improve the walking stability and obstacle jumping ability of the robot on the slope,the goat was taken as the bionic prototype,a kind of bionic goat quadruped robot has been designed.By the bionic principle,the mechanical structure of the quadruped robot was designed,and the Denavit-Hartenberg(D-H)method was used to build the kinematic model,through which the forward and inverse kinematics of the robot was calculated,thus the equations of velocity and acceleration of the joint angle change were obtained during the quadruped robot motion,providing control theory foundation for robots.During walk gait planning,a low contact compact foot trajectory planning method using a high order polynomial curve was used to carry out the foot trajectory planning of the robot for the swing phase and stance phase.Through MATLAB software simulation,the simulation results of MATLAB software showed that the trajectory of the foot of the quadruped robot was semi-elliptic in a gait cycle,which were basically consistent with the foot trajectory obtained from the previous goat slope walking test.Therefore,the simulation results by MATLAB software showed that the foot trajectory was reasonable.Based on this,a gait plan was carried out,and the sequence of the lift leg steps of the robot was obtained.The test platform for the whole machine was built.The results showed that the height of the leg of the quadruped robot was 7.37 cm,and the length of the gait was 28.40 cm.Compared with the planned average gait length S=30 cm and average step height H=7 cm,the error of the leg height and the gait length was 5.28%and 5.33%,respectively.The designed gait planning achieved the expected results.The knee joint angle varied from 126.3°to 156.1°,and the hip joint angle varied from 103.9°to 138.4°.The changes in the joint angle of the quadruped robot could prove the correctness of the foot motion trajectory planning,which will provide a theoretical basis for the structural design and gait planning of the quadruped robot.
基金the National Natural Science Foundation of China(61320106012,61533004,61375103,61673069,61321002)the 863 Program of China(2015AA043202,2015AA042305)+2 种基金the Key Technologies R&D Program(2015BAF13B01,2015BAK35B01)the Beijing Municipal Science and Technology Project(D161100003016002)the"111"Project(B08043)
文摘Based on the ZMP(zero moment point)trajectory and the walking data of human,a new method is proposed to improve the robot walking smoothness as well as to save energy.Firstly,a measurement system is designed to measure the data of humans including the ZMP trajectory and the waist trajectory.Secondly,a new gait planning method which includes presetting the allowable ZMP region is proposed through analyzing human data.Thirdly,the new planning method is applied to the multi-link model based gait planning method.Finally,the feasibility of the proposed method is verified by simulation and experiments.
基金Sponsored by the Ministerial Level Advanced Research Foundation(6140528)
文摘Realistically there are many robot joints in the biologically inspired hexapod robot, so they will generate many complexities in the calculations of the gait and the path planning and the control variables. The software Solidworks and MSC. ADAMS are adopted to simulate and analyze the prototype model of the robot. By the simulations used in our design, the applicability of the tripod gait is validated, and the scheme which uses cubic spline curve as the endpoint of foot's path is feasible. The principles, methods, and processes of the simulation of hexapod robot are illustrated. A methodology is proposed to get the robot inverse solution in ADAMS, and to simplify the theoretical calculation, and further more to improve the efficiency of the design.
文摘In this paper,we propose a new gait planning method for a multi-legged robot which has only 1 degree-of-freedom in each leg and has a passive body joint between two body segments.We firstly introduce the Finite State Machine(FSM)to the undulatory gait planning method of the 2n-legged robot.Then,the undulatory gait sequence for straight line motion is achieved by undulations motion.The idea that legged locomotion is achievable by less actuation of 2n-legged robot as well as the gait planning methods are verified finally by simulations and experiments.
基金National Natural Science Foundation of China(Grant No.51735009)。
文摘This paper presents an effective way to support motion planning of legged mobile robots—Inverted Modelling,based on the equivalent metamorphic mechanism concept.The difference from the previous research is that we herein invert the equivalent parallel mechanism.Assuming the leg mechanisms are hybrid links,the body of robot being considered as fixed platform,and ground as moving platform.The motion performance is transformed and measured in the body frame.Terrain and joint limits are used as input parameters to the model,resulting in the representation which is independent of terrains and particular poses in Inverted Modelling.Hence,it can universally be applied to any kind of legged robots as global motion performance framework.Several performance measurements using Inverted Modelling are presented and used in motion performance evaluation.According to the requirements of actual work like motion continuity and stability,motion planning of legged robot can be achieved using different measurements on different terrains.Two cases studies present the simulations of quadruped and hexapod robots walking on rugged roads.The results verify the correctness and effectiveness of the proposed method.
基金supported by the Guangxi Science and Technology Base and Talent Project(AD23026115)the Special fund for centrally guided local science and technology development(2023JRZ0103)+1 种基金the Guangxi University of Science and Technology Doctoral Fund(2023KY0353)the Guangxi University of Science and Technology Doctoral Fund(22Z39).
文摘In order to reduce the labor intensity of high-altitude workers and realize the cleaning and maintenance of high-rise building exteriors,this paper proposes a design for a 4-DOF bipedal wall-climbing bionic robot inspired by the inchworm’s movement.The robot utilizes vacuum adsorption for vertical wall attachment and legged movement for locomotion.To enhance the robot’s movement efficiency and reduce wear on the adsorption device,a gait mimicking an inchworm’s movement is planned,and foot trajectory planning is performed using a quintic polynomial function.Under velocity constraints,foot trajectory optimization is achieved using an improved Particle Swarm Optimization(PSO)algorithm,determining the quintic polynomial function with the best fitness through simulation.Finally,through comparative experiments,the climbing time of the robot closely matches the simulation results,validating the trajectory planning method’s accuracy.