Nanosized Ga-containing ZSM-5 zeolites were prepared via isomorphous substitution and impregnation followed by characterized using various techniques. The catalytic performance of the zeolites for the aromatization of...Nanosized Ga-containing ZSM-5 zeolites were prepared via isomorphous substitution and impregnation followed by characterized using various techniques. The catalytic performance of the zeolites for the aromatization of 1-hexene was investigated. The results indicate that isomorphous substitution promotes the incorporation of Ga heteroatoms into the framework along with the formation of extra-framework GaO;species([GaO;]a) that have stronger interactions with the negative potential of the framework. In addition, based on the Py-IR results and catalytic performance, the [GaO;]aspecies with stronger Lewis acid sites produced a better synergism with moderate Br?nsted acid sites and thus improved the selectivity to aromatic compounds. However, the impregnation results in the formation of Ga;O;phase and small amounts of GaO;species that are mainly located on the external surface([GaO;];), which contribute to weaker Lewis acid sites due to weaker interactions with the zeolite framework. During 1-hexene aromatization, the nanosized Ga isomorphously substituted ZSM-5 zeolite samples(Gax-NZ5) exhibited better catalytic performance compared to the impregnated samples, and the highest aromatic yield(i.e.,65.4 wt%) was achieved over the Ga4.2-NZ5 sample, which contained with the highest Ga content.展开更多
基金supported by the National Natural Science Foundation of China(Nos.21276067 and 21676074)Programs of International S&T cooperation(No.2014DFR41110)
文摘Nanosized Ga-containing ZSM-5 zeolites were prepared via isomorphous substitution and impregnation followed by characterized using various techniques. The catalytic performance of the zeolites for the aromatization of 1-hexene was investigated. The results indicate that isomorphous substitution promotes the incorporation of Ga heteroatoms into the framework along with the formation of extra-framework GaO;species([GaO;]a) that have stronger interactions with the negative potential of the framework. In addition, based on the Py-IR results and catalytic performance, the [GaO;]aspecies with stronger Lewis acid sites produced a better synergism with moderate Br?nsted acid sites and thus improved the selectivity to aromatic compounds. However, the impregnation results in the formation of Ga;O;phase and small amounts of GaO;species that are mainly located on the external surface([GaO;];), which contribute to weaker Lewis acid sites due to weaker interactions with the zeolite framework. During 1-hexene aromatization, the nanosized Ga isomorphously substituted ZSM-5 zeolite samples(Gax-NZ5) exhibited better catalytic performance compared to the impregnated samples, and the highest aromatic yield(i.e.,65.4 wt%) was achieved over the Ga4.2-NZ5 sample, which contained with the highest Ga content.