Au nanostructures were prepared on uniform Cu2O octahedra and rhombic dodecahedra via the galvanic replacement reaction between HAuCl 4 and Cu2O. The compositions and structures were studied by Scanning Electron Micro...Au nanostructures were prepared on uniform Cu2O octahedra and rhombic dodecahedra via the galvanic replacement reaction between HAuCl 4 and Cu2O. The compositions and structures were studied by Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), High-Resolution Transmission Electron Microscope (HRTEM), X-Ray Diffraction (XRD), X-Ray Absorption Spectroscopy (XAS), X-ray Photoelectron Spectroscopy (XPS) and in-situ DRIFTS spectroscopy of CO adsorption. Different from the formation of Au-Cu alloys on Cu2O cubes by the galvanic replacement reaction (ChemNanoMat 2 (2016) 861-865), metallic Au particles and positively-charged Au clusters form on Cu2O octahedra and rhombic dodecahedra at very small Au loadings and only metallic Au particles form at large Au loadings. Metallic Au particles on Cu2O octahedra and rhombic dodecahedra are more active in catalyzing the liquid phase aerobic oxidation reaction of benzyl alcohol than positively-charged Au clusters. These results demonstrate an obvious morphology effect of Cu2O nanocrystals on the liquid-solid interfacial reactions and prove oxide morphology as an effective strategy to tune the surface reactivity and catalytic performance. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
Yolk-shell ternary composites composed of a Ni sphere core and a SnO2(Ni3Sn2) shell were successfully prepared by a facile two-step method. The size, morphology, microstructure, and phase purity of the resulting com...Yolk-shell ternary composites composed of a Ni sphere core and a SnO2(Ni3Sn2) shell were successfully prepared by a facile two-step method. The size, morphology, microstructure, and phase purity of the resulting composites were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy (TEM), high-resolution TEM, selected-area electron diffraction, and powder X-ray diffraction. The core sizes, interstitial void volumes, and constituents of the yolk-shell structures varied by varying the reaction time. A mechanism based on the time-dependent experiments was proposed for the formation of the yolk-shell structures. The yolk-shell structures were formed by a synergistic combination of an etching reaction, a galvanic replacement reaction, and the Kirkendall effect. The yolk-shell ternary SnO2 (Ni3Sn2)@Ni composites synthesized at a reaction time of 15 h showed excellent microwave absorption properties. The reflection loss was found to be as low as -43 dB at 6.1 GHz. The enhanced microwave absorption properties may be attributed to the good impedance match, multiple reflections, the scattering owing to the voids between the core and the shell, and the effective complementarities between the dielectric loss and the magnetic loss. Thus, the yolk-shell ternary composites are expected to be promising candidates for microwave absorption applications, lithium ion batteries, and photocatalysis.展开更多
Galvanic replacement reactions have been widely used to transform solution dispersed silver template structures into intricate nanoshell geometries. Here, we report on the use of these same reactions to form hollow su...Galvanic replacement reactions have been widely used to transform solution dispersed silver template structures into intricate nanoshell geometries. Here, we report on the use of these same reactions to form hollow substrate-supported Au-Ag nanoshells from silver templates having a heteroepitaxial relationship with the underlying single crystal substrate. The structures obtained exhibit a nanohut geometry, show highly tunable plasmonic properties and are formed as periodic arrays using a lithography-free technique. When removed from the substrate the inverted nanohuts appear as nanobowls with a notch in the rim. The study lays the groundwork for wafer-based devices utilizing nanoshells located at site-specific locations.展开更多
Galvanic replacement, one of the popular strategies for producing hollow metallic nanostructures, has enjoyed great success in the past. However, it is rarely used with Au nanopartides as the self-sacrificed templates...Galvanic replacement, one of the popular strategies for producing hollow metallic nanostructures, has enjoyed great success in the past. However, it is rarely used with Au nanopartides as the self-sacrificed templates, even though these nanoparticles can be produced with well-controlled size, shape, and structure. Here, both Ag and Au from the core-sheU Au@Ag nanorods are demonstrated to be involved in the galvanic replacement for producing hollow nanostructures. The enhanced oxidation of metallic Au could be attributed to the close contact between Au and Ag and the unique charge compensation from Au to Ag, both of which are indispensable for the etching of Au via galvanic replacement. As a result of this reaction, these bimetallic nanorods experience a structural evolution from nanorattles, to tip-empty nanorods, and eventually to porous nanotubes. The nanotubes exhibit high catalytic activities in the electrooxidation of formic acid. These results not only disclose the underlying mechanism by which metallic Au could be replaced under mild conditions, but also expand the selection of self-sacrificed templates for galvanic replacement, which is an important reaction in many applications.展开更多
With tremendous research advances in biomedical application,liquid metals(LM)also offer fantastic chemistry for synthesis of novel nano-composites.Herein,as a pioneering trial,litchi-shaped heterogeneous eutectic gall...With tremendous research advances in biomedical application,liquid metals(LM)also offer fantastic chemistry for synthesis of novel nano-composites.Herein,as a pioneering trial,litchi-shaped heterogeneous eutectic gallium indium-Au nanoparticles(EGaIn-Au NPs),served as effective radiosensitizer and photothermal agent for radio-photothermal cancer therapy,have been successfully prepared using in situ interfacial galvanic replacement reaction.The enhanced photothermal conversion efficiency and boosted radio-sensitization effect could be achieved with the reduction of Au nanodots onto the eutectic gallium indium(EGaIn)NPs surface.Most importantly,the growth of tumor could be effectively inhibited under the combined radio-photothermal therapy mediated by EGaIn-Au NPs.Inspired by this approach,in situ interfacial galvanic replacement reaction may open a novel strategy to fabricate LM-based nano-composite with advanced multi-functionalities.展开更多
The noble metal Pt is an ideal catalyst for promoting the hydrogen evolution reaction(HER)during the electrolysis of water.However,Pt is also expensive and suffers from low utilization rates.In this work,a Pt-Ni_(2)P/...The noble metal Pt is an ideal catalyst for promoting the hydrogen evolution reaction(HER)during the electrolysis of water.However,Pt is also expensive and suffers from low utilization rates.In this work,a Pt-Ni_(2)P/NF nanorod catalyst with a low Pt loading was synthesized under different magnetic fields,and it was found that the application of a magnetic field can increase the rate of the galvanic replacement reaction.When the magnetic field strength increases from 0 to 600 mT,the chemical reaction rate increases gradually,and the utilization rate of Pt increased by 2.3 times under 600 mT.The mechanism of the magnetic field-induced magnetohydrodynamic(MHD)effect on the galvanic replacement reaction was revealed.In a 1 M KOH solution and at a current density of 10 mA cm^(-2),the overpotential of Pt-Ni_(2)P/NF prepared by applying a 600 mT magnetic field was as low as 15 mV and the Tafel slope was 37 mV dec^(-1),compared with values of 82 mV and 70 mV dec^(-1) for a specimen prepared without a magnetic field.Additionally,at an overpotential of 90 mV,the mass-based Pt activity of the former material was 12 times greater while its turnover frequency was 19 times greater.This work provides theoretical and technical knowledge expected to assist in the controllable preparation of materials in magnetic fields and the efficient utilization of metallic resources.展开更多
Triangular Au-Ag framework nanostructures (TFN) were synthesized via a multi-step galvanic replacement reaction (MGRR) of single-crystalline triangular silver nanoplates in a chlorauric acid (HAuCl4) solution at...Triangular Au-Ag framework nanostructures (TFN) were synthesized via a multi-step galvanic replacement reaction (MGRR) of single-crystalline triangular silver nanoplates in a chlorauric acid (HAuCl4) solution at room temperature. The morphological, compositional, and crystal structural changes involved with reaction steps were analyzed by using transmission electron microscopy(TEM), energy-dispersive X-ray spectrometry (EDX), and X-ray diffraction. TEM combined with EDX and selected area electron diffraction confirmed the replacement of Ag with Au. The in-plane dipolar surface plasmon resonance (SPR) absorption band of the Ag nanoplates locating initially at around 700 nm gradually redshifted to 1 100 nm via a multi-stage replacement manner after 7 stages. The adding amount of HAuCl4 per stage influenced the average redshift value per stage, thus enabled a fine tuning of the in-plane dipolar band. A proposed formation mechanism of the original Ag nanoplates developing pores while growing Au nanoparticles covering this underlying structure at more reaction steps was confirmed by exploiting surface-enhanced Raman scattering (SERS).展开更多
Galvanic deposition method was used to prepare the Pd/Ni-Al2O3-GD catalyst for the combustion of methane under lean conditions. The new catalyst and compared catalysts (Pd/Al2O3-IW, Pd-Ni/Al2O3-IW, Pd/Ni-Al2O3-IW) p...Galvanic deposition method was used to prepare the Pd/Ni-Al2O3-GD catalyst for the combustion of methane under lean conditions. The new catalyst and compared catalysts (Pd/Al2O3-IW, Pd-Ni/Al2O3-IW, Pd/Ni-Al2O3-IW) prepared by incipient wetness impregnation were characterized by N2-physisorption, XRD and TEM to clarify particle size and size distribution of palladium species. Combined O2-TPD and XPS results with the catalytic data, it shows that the surface palladium species with low valence exhibits better combustion performance due to their stronger interaction with support. The results indicate that the galvanic deposition method is an effective route to prepare efficient catalyst for methane combustion, and it also provides useful information for improving the present commercial catalyst.展开更多
One of the most primary challenges to achieve large-scale hydrogen generation from water electrolysis is the sluggish kinetics and noble metal dependence of cathodic hydrogen evolution reaction(HER).By considering the...One of the most primary challenges to achieve large-scale hydrogen generation from water electrolysis is the sluggish kinetics and noble metal dependence of cathodic hydrogen evolution reaction(HER).By considering the excellent water dissociation catalytic activity of Mo2C, abundant Pt/Mo2C interfaces were facilely engineered via galvanic replacement(gr) by using Mo/Mo2C nanosheets as self-sacrificed templates to alter the alkaline HER mechanism on Pt based catalyst. The rational designed interface-rich gr-Pt/Mo2C catalyst exhibited excellent activity with the overpotential to drive 10 mA/cm2 current density decreased by 18.5 mV compared with the commercial Pt/C catalyst. 34.3 mV/dec Tafel slope confirms the Volmer-Tafel HER route on gr-Pt/Mo2C in alkaline condition. Platinum utilization is calculated to be improved by 9.7 times by considered the low Pt loading in the gr-Pt/Mo2C catalyst. With its satisfied stability, the scalable gr-Pt/Mo2C catalyst shows promising application potential in industrial electrolysis systems.展开更多
The high-performance anodic electrocatalysts is pivotal for realizing the commercial application of the direct formic acid fuel cells.In this work,a simple polyethyleneimine-assisted galvanic replacement reaction is a...The high-performance anodic electrocatalysts is pivotal for realizing the commercial application of the direct formic acid fuel cells.In this work,a simple polyethyleneimine-assisted galvanic replacement reaction is applied to synthesize the high-quality PtTe alloy nanowires(PtTe NW)by using Te NW as an efficient sacrificial template.The existence of Te atoms separates the continuous Pt atoms,triggering a direct reaction pathway of formic acid electrooxidation reaction(FAEOR)at PtTe NW.The one-dimensional architecture and highly active sites have enabled PtTe NW to reveal outstanding electrocatalytic activity towards FAEOR with the mass/specific activities of 1091.25 mA mg^(-1)/45.34 A m^(-2)at 0.643 V potential,which are 44.72/23.16 and 20.26/11.75 times bigger than those of the commercial Pt and Pd nanoparticles,respectively.Density functional theory calculations reveal that Te atoms optimize the electronic structure of Pt atoms,which decreases the adsorption capacity of CO intermediate and simultaneously improves the durability of PtTe NW towards FAEOR.This work provides the valuable insights into the synthesis and design of efficient Pt-based alloy FAEOR electrocatalysts.展开更多
Ni-Fe bimetallic electrodes are currently recognized as a kind of benchmark transition metal-based oxygen evolution reaction(OER)electrocatalysts.Facile synthesis of Ni-Fe bimetallic electrode materials with excellent...Ni-Fe bimetallic electrodes are currently recognized as a kind of benchmark transition metal-based oxygen evolution reaction(OER)electrocatalysts.Facile synthesis of Ni-Fe bimetallic electrode materials with excellent catalytic activity and satisfied stability by a simple and low-cost route is still a big challenge.Herein,well-defined Ni-Fe nanoparticles in-situ developed on a planar Fe substrate(Ni-Fe NPs/Fe)is fabricated via a facile one-step galvanic replacement reaction(GRR)carried out in an Ethaline-based deep eutectic solvent(DES).The prepared Ni-Fe NPs/Fe exhibits outstanding OER performance,which needs an overpotential of only 319 mV to drive a current density of 10 mA cm^(-2),with a small Tafel slope of 41.2 mV dec^(-1) in 1.0 mol L^(-1) KOH,high mass activity(up to 319.78 A g^(-1) at an overpotential of 300 mV)and robust durability for 200 h.Impressively,the Ni-Fe bimetallic oxygen-evolution electrode obtained from the Ethaline-based DES is catalytically more active and durable than that of its counterpart derived from the 4.2 mol L^(-1) NaCl aqueous solution.The reason for this is mainly related to the different morphology and surface state of the Ni-Fe catalysts obtained from these different solvent environments,particularly for the differences in phy-chemical properties,active species formed and deposition kinetics,offered by the Ethaline-based DES.展开更多
Alloying of metals is known from antiquity. Alloy making <em>i.e.</em>, homogenizing metals started in a “hit-or-miss” way. The 1</span><sup><span style="font-family:Verdana;">...Alloying of metals is known from antiquity. Alloy making <em>i.e.</em>, homogenizing metals started in a “hit-or-miss” way. The 1</span><sup><span style="font-family:Verdana;">st</span></sup><span style="font-family:Verdana;"> alloy from copper (Cu) and tin (Sn) was produced around 2500 BC and from then Bronze Age began. Subsequently iron (Fe) age started after the Bronze Age. Aluminium (Al) alloying was discovered much later because pure Al could not be recovered easily even though Al is the most abundant metal in the earth’s crust. Refining of Al is a very difficult job because of its strong affinity towards oxygen. To ease alloying, melting points (mp) of the individual constituents and reactivity of metal towards oxygen were the hurdles. Now understanding the thermodynamics of metal mixing has paved alloying. Periodic properties of elements concerning size, electronegativity, crystal structure, valency, lattice spacing, etc. are considered for alloying. In this feature article, more emphasis is given to Hume-Rothery rules in which the necessary parameters for alloying have been illustrated. Importantly standard electrode potential (E</span><sup><span style="font-family:Verdana;">0</span></sup><span style="font-family:Verdana;">) values, eutectic, phase diagram, size-related strain in metals, etc. have been looked into in the present discussion. One elegant example is Sn-Pb alloy, known as soft solder. Soft solder was in use for many years to connect metals and in electric circuitry. Low melting, flowability, and conductivity of soft solder had placed Sn-Pb alloy a unique position in industries, laboratories and even in cottage industries. However, toxic Pb volatilizes during soldering and hence soft solder is banned almost in all countries. We felt the need for a viable alternative to obtain soldering material and then silver (Ag) based highly conducting, an eco-friendly alloy of Sn resulted in from a high boiling liquid. The discovery engenders not only a new conducting soldering alloy but also a new concept of melting metals together. Furthermore, new ideas of alloying have been generalized at their nanostages from a suitable high boiling solvent.展开更多
A facile hydrothermal synthetic method, followed by in situ reduction and galvanic replacement processes, is used to prepare PtCo-modified Co304 nanosheets (PtCo/C0304 NSs) supported on Ni foam. The prepared nanomat...A facile hydrothermal synthetic method, followed by in situ reduction and galvanic replacement processes, is used to prepare PtCo-modified Co304 nanosheets (PtCo/C0304 NSs) supported on Ni foam. The prepared nanomaterial is used as an electrocatalyst for NaBH4 oxidation in alkaline solution. The morphology and phase composition of PtCo/C0304 NSs are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The catalytic performance of PtCo/Co3O4 NSs is investigated by cyclic voltammetry (CV) and chronoamperometry (CA) in a standard three-electrode system. Current densities of 70 and 850 mA·cm^-2 were obtained at -0.4 V for Co/Co3O4 and PtCo/Co3O4 NSs, respectively, in a solution containing 2 mol·L^-1 NaOH and 0.2 mol·L^-1 NaBH4. The use of a noble metal (Pt) greatly enhances the catalytic activity of the transition metal (Co) and Co3O4. Besides, both Co and Co3O4 exhibit good B-H bond breaking ability (in NaBH4), which leads to better electrocatalytic activity and stability of PtCo/Co3O4 NSs in NaBH4 electrooxidation compared to pure Pt. The results demonstrate that the as-prepared PtCo/Co3O4 NSs can be a promising electrocatalyst for borohydride oxidation.展开更多
Matryoshka-caged gold nanorods (mCGNRs) were successfully synthesized by alternating between a seed-mediated silver-coating method and galvanic replacement reactions (GRRs). As the number of matryoshka layers of t...Matryoshka-caged gold nanorods (mCGNRs) were successfully synthesized by alternating between a seed-mediated silver-coating method and galvanic replacement reactions (GRRs). As the number of matryoshka layers of the mCGNRs increased, the plasmon resonance peak broadened and was red-shifted, and the catalytic activity towards the reduction of 4-nitrophenol (4-NTP) increased. When mCGNRs with 6 layers were used as nanocatalysts in the reduction of 4-nitrophenol, the reaction rate coefficient was 5.2- and 3.7-times higher than that of the gold-nanorod- and caged-gold-nanorod-catalyzed reductions of 4-nitrophenol, respectively. In addition, the surface-plasmon-resonance-based absorption of light enhanced the catalytic performance of the mCGNRs. With the support of a polyurethane foam, the mCGNRs synthesized in this study can be applied as recydable heterogeneous catalysts for the reduction of 4-nitrophenol.展开更多
Novel,hierarchical,flower-like Ag/Cu2O and Au/Cu2O nanostructures were successfully fabricated and applied as efficient electrocatalysts for the electrochemical reduction of CO2.Cu2O nanospheres with a uniform size of...Novel,hierarchical,flower-like Ag/Cu2O and Au/Cu2O nanostructures were successfully fabricated and applied as efficient electrocatalysts for the electrochemical reduction of CO2.Cu2O nanospheres with a uniform size of^180 nm were initially synthesized.Thereafter,Cu2O was used as a sacrificial template to prepare a series of Ag/Cu2O composites through galvanic replacement.By varying the Ag/Cu atomic ratio,Ago.12/Cu2O,having a hierarchical,flower-like nanostructure with intersecting Ag nanoflakes encompassing an inner Cu2O sphere,was prepared.The as-prepared Ag/Cu2O samples presented higher Faradaic efficiencies(FE)for CO and relatively suppressed H2 evolution than the parent Cu2O nanospheres due to the combination of Ag with Cu2O in the former.Notably,the highest CO evolution rate was achieved with Ago.12/Cu2O due to the larger electroactive surface area furnished by the hierarchical structure.The same hier-archical flower-like structure was also obtained for the Auo./Cu2O composite,where the FEco(10%)was even higher than that of Ago.12/Cu2O.Importantly,the results reveal that Ago.12/Cu2O and Auo./Cu2O both exhibit remarkably improved stability relative to Cu2O.This study presents a facile method of developing hierarchical metal-oxide composites as fficient and stable electrocatalysts for the electrochemical reduction of CO2.展开更多
This paper describes a facile method of preparing cubic Au nanoframes with open structures via the galvanic replacement reaction between Ag nanocubes and AuCl_(2)^(-).A mechanistic study of the reaction revealed that ...This paper describes a facile method of preparing cubic Au nanoframes with open structures via the galvanic replacement reaction between Ag nanocubes and AuCl_(2)^(-).A mechanistic study of the reaction revealed that the formation of Au nanoframes relies on the diffusion of both Au and Ag atoms.The effect of the edge length and ridge thickness of the nanoframes on the localized surface plasmon resonance peak was explored by a combination of discrete dipole approximation calculations and single nanoparticle spectroscopy.With their hollow and open structures,the Au nanoframes represent a novel class of substrates for applications including surface plasmonics and surface-enhanced Raman scattering.展开更多
Gold-based catalysts are promising in CO preferential oxidation(CO-PROX)reaction in H_(2)-rich stream on account of their high intrinsic activity for CO elimination even at ambient temperature.However,the decrease of ...Gold-based catalysts are promising in CO preferential oxidation(CO-PROX)reaction in H_(2)-rich stream on account of their high intrinsic activity for CO elimination even at ambient temperature.However,the decrease of CO conversion at elevated temperature due to the competition of H_(2)oxidation,together with the low stability of gold nanoparticles,has posed a dear challenge.Herein,we report that Au-Cu bimetallic catalyst prepared by galvanic replacement method shows a wide temperature window for CO total conversion(30-100℃)and very good catalyst stability without deactivation in a 200-h test.Detailed characterizations combined with density functional theory(DFT)calculation reveal that the synergistic effect of Au-Cu,the electron transfer from Au to Cu,leads to not only strengthened chemisorption of CO but also weakened dissociation of H_(2),both of which are helpful in inhibiting the competition of H_(2)oxidation thus widening the temperature window for CO total conversion.展开更多
Rational design and construction of chiral-achiral hybrid structures are of great importance to realize the multifunctional complex chiral structures toward emerging technological applications. However, significant ch...Rational design and construction of chiral-achiral hybrid structures are of great importance to realize the multifunctional complex chiral structures toward emerging technological applications. However, significant challenges remain due to the lack of fine control over the heterostructure. Here, we have developed a general bottom-up synthetic strategy for the site-selective growth of Cu nanodomains on intrinsically chiral Au nanocrystals. Chiral AuCu heterostructures with three distinct architectures were achieved by controlling the overgrowth of Cu nanodomains in a site-specific manner. The geometry-dependent plasmonic chirality of the heterostructures was demonstrated experimentally by circular dichroism spectroscopy and theoretically through finite-difference time-domain simulations. The site-specific geometric control of chiral AuCu heterostructures was also extended to employ anisotropic chiral Au nanoplates and nanorods as the building blocks. By virtue of the galvanic replacement reactions between metal ions and Cu atoms, chiral heterostructures with increasing architectural complexity and compositional diversity can be further achieved. The current work not only opens up a promising strategy to synthesize complex chiral hybrid nanostructures but also provides an important knowledge framework that guides the rational design of multifunctional chiral hybrid nanostructures toward chiroptical applications.展开更多
Oriented attachment can be used as a good synthetic route to make highly anisotropic nanostructures including nanorod,nanowire,nanoplate,and nanosheets.In a typical growth of anisotropic nanostructures,coalescence and...Oriented attachment can be used as a good synthetic route to make highly anisotropic nanostructures including nanorod,nanowire,nanoplate,and nanosheets.In a typical growth of anisotropic nanostructures,coalescence and reshaping after attachment make dense nanostructures.In this report,we show the formation of Ag sheets having fractal network by oriented attachment at low reaction temperature of 30℃.The synthesized Ag sheets exhibited good crystalline nature despite of their network structure and low synthetic temperature.We also investigated the effect of reaction conditions for the formation of the Ag sheets.In addition,using the Ag sheets as a sacrificial template,we could make hollow Au sheets via galvanic replacement.展开更多
基金supported by the National Basic Research Program of China(2013CB933104)the National Natural Science Foundation of China(21525313,21173204,21373192,U1332113)+1 种基金MOE Fundamental Research Funds for the Central Universities(WK2060030017)Collaborative Innovation Center of Suzhou Nano Science and Technology
文摘Au nanostructures were prepared on uniform Cu2O octahedra and rhombic dodecahedra via the galvanic replacement reaction between HAuCl 4 and Cu2O. The compositions and structures were studied by Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), High-Resolution Transmission Electron Microscope (HRTEM), X-Ray Diffraction (XRD), X-Ray Absorption Spectroscopy (XAS), X-ray Photoelectron Spectroscopy (XPS) and in-situ DRIFTS spectroscopy of CO adsorption. Different from the formation of Au-Cu alloys on Cu2O cubes by the galvanic replacement reaction (ChemNanoMat 2 (2016) 861-865), metallic Au particles and positively-charged Au clusters form on Cu2O octahedra and rhombic dodecahedra at very small Au loadings and only metallic Au particles form at large Au loadings. Metallic Au particles on Cu2O octahedra and rhombic dodecahedra are more active in catalyzing the liquid phase aerobic oxidation reaction of benzyl alcohol than positively-charged Au clusters. These results demonstrate an obvious morphology effect of Cu2O nanocrystals on the liquid-solid interfacial reactions and prove oxide morphology as an effective strategy to tune the surface reactivity and catalytic performance. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金Acknowledgements The authors appreciate the financial support from the National Natural Science Foundation of China (No. 51402264), and China Postdoctoral Science Foundation (No. 2014M561996).
文摘Yolk-shell ternary composites composed of a Ni sphere core and a SnO2(Ni3Sn2) shell were successfully prepared by a facile two-step method. The size, morphology, microstructure, and phase purity of the resulting composites were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy (TEM), high-resolution TEM, selected-area electron diffraction, and powder X-ray diffraction. The core sizes, interstitial void volumes, and constituents of the yolk-shell structures varied by varying the reaction time. A mechanism based on the time-dependent experiments was proposed for the formation of the yolk-shell structures. The yolk-shell structures were formed by a synergistic combination of an etching reaction, a galvanic replacement reaction, and the Kirkendall effect. The yolk-shell ternary SnO2 (Ni3Sn2)@Ni composites synthesized at a reaction time of 15 h showed excellent microwave absorption properties. The reflection loss was found to be as low as -43 dB at 6.1 GHz. The enhanced microwave absorption properties may be attributed to the good impedance match, multiple reflections, the scattering owing to the voids between the core and the shell, and the effective complementarities between the dielectric loss and the magnetic loss. Thus, the yolk-shell ternary composites are expected to be promising candidates for microwave absorption applications, lithium ion batteries, and photocatalysis.
文摘Galvanic replacement reactions have been widely used to transform solution dispersed silver template structures into intricate nanoshell geometries. Here, we report on the use of these same reactions to form hollow substrate-supported Au-Ag nanoshells from silver templates having a heteroepitaxial relationship with the underlying single crystal substrate. The structures obtained exhibit a nanohut geometry, show highly tunable plasmonic properties and are formed as periodic arrays using a lithography-free technique. When removed from the substrate the inverted nanohuts appear as nanobowls with a notch in the rim. The study lays the groundwork for wafer-based devices utilizing nanoshells located at site-specific locations.
基金We would like to acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21071055 and 21172076), Shandong Provincial Natural Science Foundation for Distinguished Young Scholar (No. JQ201205), Taishan Scholar Program of Shandong Province (No. ts201511004), and Independent Innovation Foundation of Shandong University.
文摘Galvanic replacement, one of the popular strategies for producing hollow metallic nanostructures, has enjoyed great success in the past. However, it is rarely used with Au nanopartides as the self-sacrificed templates, even though these nanoparticles can be produced with well-controlled size, shape, and structure. Here, both Ag and Au from the core-sheU Au@Ag nanorods are demonstrated to be involved in the galvanic replacement for producing hollow nanostructures. The enhanced oxidation of metallic Au could be attributed to the close contact between Au and Ag and the unique charge compensation from Au to Ag, both of which are indispensable for the etching of Au via galvanic replacement. As a result of this reaction, these bimetallic nanorods experience a structural evolution from nanorattles, to tip-empty nanorods, and eventually to porous nanotubes. The nanotubes exhibit high catalytic activities in the electrooxidation of formic acid. These results not only disclose the underlying mechanism by which metallic Au could be replaced under mild conditions, but also expand the selection of self-sacrificed templates for galvanic replacement, which is an important reaction in many applications.
基金supported by grants of the National Natural Science Foundation of China(Nos.5197116,81671829).
文摘With tremendous research advances in biomedical application,liquid metals(LM)also offer fantastic chemistry for synthesis of novel nano-composites.Herein,as a pioneering trial,litchi-shaped heterogeneous eutectic gallium indium-Au nanoparticles(EGaIn-Au NPs),served as effective radiosensitizer and photothermal agent for radio-photothermal cancer therapy,have been successfully prepared using in situ interfacial galvanic replacement reaction.The enhanced photothermal conversion efficiency and boosted radio-sensitization effect could be achieved with the reduction of Au nanodots onto the eutectic gallium indium(EGaIn)NPs surface.Most importantly,the growth of tumor could be effectively inhibited under the combined radio-photothermal therapy mediated by EGaIn-Au NPs.Inspired by this approach,in situ interfacial galvanic replacement reaction may open a novel strategy to fabricate LM-based nano-composite with advanced multi-functionalities.
基金financially supported by the National Natural Science Foundation of China(Grant No.52274294)the Fundamental Research Funds for the Central Universities(Grant No.N2124007-1).
文摘The noble metal Pt is an ideal catalyst for promoting the hydrogen evolution reaction(HER)during the electrolysis of water.However,Pt is also expensive and suffers from low utilization rates.In this work,a Pt-Ni_(2)P/NF nanorod catalyst with a low Pt loading was synthesized under different magnetic fields,and it was found that the application of a magnetic field can increase the rate of the galvanic replacement reaction.When the magnetic field strength increases from 0 to 600 mT,the chemical reaction rate increases gradually,and the utilization rate of Pt increased by 2.3 times under 600 mT.The mechanism of the magnetic field-induced magnetohydrodynamic(MHD)effect on the galvanic replacement reaction was revealed.In a 1 M KOH solution and at a current density of 10 mA cm^(-2),the overpotential of Pt-Ni_(2)P/NF prepared by applying a 600 mT magnetic field was as low as 15 mV and the Tafel slope was 37 mV dec^(-1),compared with values of 82 mV and 70 mV dec^(-1) for a specimen prepared without a magnetic field.Additionally,at an overpotential of 90 mV,the mass-based Pt activity of the former material was 12 times greater while its turnover frequency was 19 times greater.This work provides theoretical and technical knowledge expected to assist in the controllable preparation of materials in magnetic fields and the efficient utilization of metallic resources.
基金Project(10804101)supported by the National Natural Science Foundation of ChinaProject(2007CB815102)supported by the National Basic Research Program of ChinaProject(2007B08007)supported by the Science and Technology Development Foundation of Chinese Academy of Engineering Physics,China
文摘Triangular Au-Ag framework nanostructures (TFN) were synthesized via a multi-step galvanic replacement reaction (MGRR) of single-crystalline triangular silver nanoplates in a chlorauric acid (HAuCl4) solution at room temperature. The morphological, compositional, and crystal structural changes involved with reaction steps were analyzed by using transmission electron microscopy(TEM), energy-dispersive X-ray spectrometry (EDX), and X-ray diffraction. TEM combined with EDX and selected area electron diffraction confirmed the replacement of Ag with Au. The in-plane dipolar surface plasmon resonance (SPR) absorption band of the Ag nanoplates locating initially at around 700 nm gradually redshifted to 1 100 nm via a multi-stage replacement manner after 7 stages. The adding amount of HAuCl4 per stage influenced the average redshift value per stage, thus enabled a fine tuning of the in-plane dipolar band. A proposed formation mechanism of the original Ag nanoplates developing pores while growing Au nanoparticles covering this underlying structure at more reaction steps was confirmed by exploiting surface-enhanced Raman scattering (SERS).
基金supported by the National Natural Science Foundation of China (21273221)the National High Technology Research and Development Program of China (863 Program, 2011AA03A406)
文摘Galvanic deposition method was used to prepare the Pd/Ni-Al2O3-GD catalyst for the combustion of methane under lean conditions. The new catalyst and compared catalysts (Pd/Al2O3-IW, Pd-Ni/Al2O3-IW, Pd/Ni-Al2O3-IW) prepared by incipient wetness impregnation were characterized by N2-physisorption, XRD and TEM to clarify particle size and size distribution of palladium species. Combined O2-TPD and XPS results with the catalytic data, it shows that the surface palladium species with low valence exhibits better combustion performance due to their stronger interaction with support. The results indicate that the galvanic deposition method is an effective route to prepare efficient catalyst for methane combustion, and it also provides useful information for improving the present commercial catalyst.
基金financial support from the National Natural Science Foundation of China (Nos.21875224 and 21703211)the Natural Science Foundation of Zhejiang Province (No.LGG19B030001)。
文摘One of the most primary challenges to achieve large-scale hydrogen generation from water electrolysis is the sluggish kinetics and noble metal dependence of cathodic hydrogen evolution reaction(HER).By considering the excellent water dissociation catalytic activity of Mo2C, abundant Pt/Mo2C interfaces were facilely engineered via galvanic replacement(gr) by using Mo/Mo2C nanosheets as self-sacrificed templates to alter the alkaline HER mechanism on Pt based catalyst. The rational designed interface-rich gr-Pt/Mo2C catalyst exhibited excellent activity with the overpotential to drive 10 mA/cm2 current density decreased by 18.5 mV compared with the commercial Pt/C catalyst. 34.3 mV/dec Tafel slope confirms the Volmer-Tafel HER route on gr-Pt/Mo2C in alkaline condition. Platinum utilization is calculated to be improved by 9.7 times by considered the low Pt loading in the gr-Pt/Mo2C catalyst. With its satisfied stability, the scalable gr-Pt/Mo2C catalyst shows promising application potential in industrial electrolysis systems.
基金supported by the National Natural Science Foundation of China(22272103 and 52171145)the Science and Technology Innovation Team of Shaanxi Province(2023-CX-TD27)+1 种基金the Fundamental Research Funds for the Central Universities(GK202202001)the 111 Project(B14041 and D20015)。
文摘The high-performance anodic electrocatalysts is pivotal for realizing the commercial application of the direct formic acid fuel cells.In this work,a simple polyethyleneimine-assisted galvanic replacement reaction is applied to synthesize the high-quality PtTe alloy nanowires(PtTe NW)by using Te NW as an efficient sacrificial template.The existence of Te atoms separates the continuous Pt atoms,triggering a direct reaction pathway of formic acid electrooxidation reaction(FAEOR)at PtTe NW.The one-dimensional architecture and highly active sites have enabled PtTe NW to reveal outstanding electrocatalytic activity towards FAEOR with the mass/specific activities of 1091.25 mA mg^(-1)/45.34 A m^(-2)at 0.643 V potential,which are 44.72/23.16 and 20.26/11.75 times bigger than those of the commercial Pt and Pd nanoparticles,respectively.Density functional theory calculations reveal that Te atoms optimize the electronic structure of Pt atoms,which decreases the adsorption capacity of CO intermediate and simultaneously improves the durability of PtTe NW towards FAEOR.This work provides the valuable insights into the synthesis and design of efficient Pt-based alloy FAEOR electrocatalysts.
基金support of the National Natural Science Foundation of China (21962008)Yunnan Province Excellent Youth Fund Project (202001AW070005)+1 种基金Candidate Talents Training Fund of Yunnan Province (2017PY269SQ,2018HB007)Yunnan Ten Thousand Talents Plan Young&Elite Talents Project (YNWR-QNBJ-2018-346)。
文摘Ni-Fe bimetallic electrodes are currently recognized as a kind of benchmark transition metal-based oxygen evolution reaction(OER)electrocatalysts.Facile synthesis of Ni-Fe bimetallic electrode materials with excellent catalytic activity and satisfied stability by a simple and low-cost route is still a big challenge.Herein,well-defined Ni-Fe nanoparticles in-situ developed on a planar Fe substrate(Ni-Fe NPs/Fe)is fabricated via a facile one-step galvanic replacement reaction(GRR)carried out in an Ethaline-based deep eutectic solvent(DES).The prepared Ni-Fe NPs/Fe exhibits outstanding OER performance,which needs an overpotential of only 319 mV to drive a current density of 10 mA cm^(-2),with a small Tafel slope of 41.2 mV dec^(-1) in 1.0 mol L^(-1) KOH,high mass activity(up to 319.78 A g^(-1) at an overpotential of 300 mV)and robust durability for 200 h.Impressively,the Ni-Fe bimetallic oxygen-evolution electrode obtained from the Ethaline-based DES is catalytically more active and durable than that of its counterpart derived from the 4.2 mol L^(-1) NaCl aqueous solution.The reason for this is mainly related to the different morphology and surface state of the Ni-Fe catalysts obtained from these different solvent environments,particularly for the differences in phy-chemical properties,active species formed and deposition kinetics,offered by the Ethaline-based DES.
文摘Alloying of metals is known from antiquity. Alloy making <em>i.e.</em>, homogenizing metals started in a “hit-or-miss” way. The 1</span><sup><span style="font-family:Verdana;">st</span></sup><span style="font-family:Verdana;"> alloy from copper (Cu) and tin (Sn) was produced around 2500 BC and from then Bronze Age began. Subsequently iron (Fe) age started after the Bronze Age. Aluminium (Al) alloying was discovered much later because pure Al could not be recovered easily even though Al is the most abundant metal in the earth’s crust. Refining of Al is a very difficult job because of its strong affinity towards oxygen. To ease alloying, melting points (mp) of the individual constituents and reactivity of metal towards oxygen were the hurdles. Now understanding the thermodynamics of metal mixing has paved alloying. Periodic properties of elements concerning size, electronegativity, crystal structure, valency, lattice spacing, etc. are considered for alloying. In this feature article, more emphasis is given to Hume-Rothery rules in which the necessary parameters for alloying have been illustrated. Importantly standard electrode potential (E</span><sup><span style="font-family:Verdana;">0</span></sup><span style="font-family:Verdana;">) values, eutectic, phase diagram, size-related strain in metals, etc. have been looked into in the present discussion. One elegant example is Sn-Pb alloy, known as soft solder. Soft solder was in use for many years to connect metals and in electric circuitry. Low melting, flowability, and conductivity of soft solder had placed Sn-Pb alloy a unique position in industries, laboratories and even in cottage industries. However, toxic Pb volatilizes during soldering and hence soft solder is banned almost in all countries. We felt the need for a viable alternative to obtain soldering material and then silver (Ag) based highly conducting, an eco-friendly alloy of Sn resulted in from a high boiling liquid. The discovery engenders not only a new conducting soldering alloy but also a new concept of melting metals together. Furthermore, new ideas of alloying have been generalized at their nanostages from a suitable high boiling solvent.
基金We gratefully acknowledge the financial support of this research by the National Natural Science Foundation of China (No. 51572052), the Natural Science Foundation of Heilongjiang Province of China (No. LC2015004), the China Postdoctoral Science Special Foundation (No. 2015T80329), the Major Project of Science and Technology of Heilongjiang Province (No. GA14A101) and the Project of Research and Development of Applied Technology of Harbin (No. 2014DB4AG016).
文摘A facile hydrothermal synthetic method, followed by in situ reduction and galvanic replacement processes, is used to prepare PtCo-modified Co304 nanosheets (PtCo/C0304 NSs) supported on Ni foam. The prepared nanomaterial is used as an electrocatalyst for NaBH4 oxidation in alkaline solution. The morphology and phase composition of PtCo/C0304 NSs are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The catalytic performance of PtCo/Co3O4 NSs is investigated by cyclic voltammetry (CV) and chronoamperometry (CA) in a standard three-electrode system. Current densities of 70 and 850 mA·cm^-2 were obtained at -0.4 V for Co/Co3O4 and PtCo/Co3O4 NSs, respectively, in a solution containing 2 mol·L^-1 NaOH and 0.2 mol·L^-1 NaBH4. The use of a noble metal (Pt) greatly enhances the catalytic activity of the transition metal (Co) and Co3O4. Besides, both Co and Co3O4 exhibit good B-H bond breaking ability (in NaBH4), which leads to better electrocatalytic activity and stability of PtCo/Co3O4 NSs in NaBH4 electrooxidation compared to pure Pt. The results demonstrate that the as-prepared PtCo/Co3O4 NSs can be a promising electrocatalyst for borohydride oxidation.
文摘Matryoshka-caged gold nanorods (mCGNRs) were successfully synthesized by alternating between a seed-mediated silver-coating method and galvanic replacement reactions (GRRs). As the number of matryoshka layers of the mCGNRs increased, the plasmon resonance peak broadened and was red-shifted, and the catalytic activity towards the reduction of 4-nitrophenol (4-NTP) increased. When mCGNRs with 6 layers were used as nanocatalysts in the reduction of 4-nitrophenol, the reaction rate coefficient was 5.2- and 3.7-times higher than that of the gold-nanorod- and caged-gold-nanorod-catalyzed reductions of 4-nitrophenol, respectively. In addition, the surface-plasmon-resonance-based absorption of light enhanced the catalytic performance of the mCGNRs. With the support of a polyurethane foam, the mCGNRs synthesized in this study can be applied as recydable heterogeneous catalysts for the reduction of 4-nitrophenol.
基金We are grateful to the Analysis and Test Center of Tianjin University for providing XRD,SEM,and TEM characterization.We also acknowledge the National Natural Science Foundation of China(Grant Nos.21576204 and 21206117)for financial support.
文摘Novel,hierarchical,flower-like Ag/Cu2O and Au/Cu2O nanostructures were successfully fabricated and applied as efficient electrocatalysts for the electrochemical reduction of CO2.Cu2O nanospheres with a uniform size of^180 nm were initially synthesized.Thereafter,Cu2O was used as a sacrificial template to prepare a series of Ag/Cu2O composites through galvanic replacement.By varying the Ag/Cu atomic ratio,Ago.12/Cu2O,having a hierarchical,flower-like nanostructure with intersecting Ag nanoflakes encompassing an inner Cu2O sphere,was prepared.The as-prepared Ag/Cu2O samples presented higher Faradaic efficiencies(FE)for CO and relatively suppressed H2 evolution than the parent Cu2O nanospheres due to the combination of Ag with Cu2O in the former.Notably,the highest CO evolution rate was achieved with Ago.12/Cu2O due to the larger electroactive surface area furnished by the hierarchical structure.The same hier-archical flower-like structure was also obtained for the Auo./Cu2O composite,where the FEco(10%)was even higher than that of Ago.12/Cu2O.Importantly,the results reveal that Ago.12/Cu2O and Auo./Cu2O both exhibit remarkably improved stability relative to Cu2O.This study presents a facile method of developing hierarchical metal-oxide composites as fficient and stable electrocatalysts for the electrochemical reduction of CO2.
基金This work was supported in part by a Director’s Pioneer Award from the NIH(5DPOD000798,Y.X.)the Air Force Office of Scientific Research(D.S.G.and Y.C.)+1 种基金the National Science Foundation(DMR 0520567,D.S.G.and Y.C.)the National Natural Science Foundation of China(10525419,60736041,and 10874238,Z.Y.L.)。
文摘This paper describes a facile method of preparing cubic Au nanoframes with open structures via the galvanic replacement reaction between Ag nanocubes and AuCl_(2)^(-).A mechanistic study of the reaction revealed that the formation of Au nanoframes relies on the diffusion of both Au and Ag atoms.The effect of the edge length and ridge thickness of the nanoframes on the localized surface plasmon resonance peak was explored by a combination of discrete dipole approximation calculations and single nanoparticle spectroscopy.With their hollow and open structures,the Au nanoframes represent a novel class of substrates for applications including surface plasmonics and surface-enhanced Raman scattering.
基金This work was financially supported by the“Transformational Technologies for Clean Energy and Demonstration”,the Strategic Priority Research Program of the Chinese Academy of Sciences(CAS,No.XDA21030900)DNL Cooperation Fund,CAS(No.DNL201903)the National Natural Science Foundation of China(No.51701201).
文摘Gold-based catalysts are promising in CO preferential oxidation(CO-PROX)reaction in H_(2)-rich stream on account of their high intrinsic activity for CO elimination even at ambient temperature.However,the decrease of CO conversion at elevated temperature due to the competition of H_(2)oxidation,together with the low stability of gold nanoparticles,has posed a dear challenge.Herein,we report that Au-Cu bimetallic catalyst prepared by galvanic replacement method shows a wide temperature window for CO total conversion(30-100℃)and very good catalyst stability without deactivation in a 200-h test.Detailed characterizations combined with density functional theory(DFT)calculation reveal that the synergistic effect of Au-Cu,the electron transfer from Au to Cu,leads to not only strengthened chemisorption of CO but also weakened dissociation of H_(2),both of which are helpful in inhibiting the competition of H_(2)oxidation thus widening the temperature window for CO total conversion.
基金supported by the National Natural Science Foundation of China (22174104 to Q.Z.)the support of the Hubei Provincial Natural Science Foundation of China (2022CFB627)the Fundamental Research Funds for the Central Universities (20422022kf1039)。
文摘Rational design and construction of chiral-achiral hybrid structures are of great importance to realize the multifunctional complex chiral structures toward emerging technological applications. However, significant challenges remain due to the lack of fine control over the heterostructure. Here, we have developed a general bottom-up synthetic strategy for the site-selective growth of Cu nanodomains on intrinsically chiral Au nanocrystals. Chiral AuCu heterostructures with three distinct architectures were achieved by controlling the overgrowth of Cu nanodomains in a site-specific manner. The geometry-dependent plasmonic chirality of the heterostructures was demonstrated experimentally by circular dichroism spectroscopy and theoretically through finite-difference time-domain simulations. The site-specific geometric control of chiral AuCu heterostructures was also extended to employ anisotropic chiral Au nanoplates and nanorods as the building blocks. By virtue of the galvanic replacement reactions between metal ions and Cu atoms, chiral heterostructures with increasing architectural complexity and compositional diversity can be further achieved. The current work not only opens up a promising strategy to synthesize complex chiral hybrid nanostructures but also provides an important knowledge framework that guides the rational design of multifunctional chiral hybrid nanostructures toward chiroptical applications.
基金This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science,ICT,&Future Planning(2014R1A5A1009799)by a National Research Foundation of Korea grant funded by the Korean government(MSIP)(NRF-2015R1C1A1A01054109 and NRF-2016M3D1A1021140).
文摘Oriented attachment can be used as a good synthetic route to make highly anisotropic nanostructures including nanorod,nanowire,nanoplate,and nanosheets.In a typical growth of anisotropic nanostructures,coalescence and reshaping after attachment make dense nanostructures.In this report,we show the formation of Ag sheets having fractal network by oriented attachment at low reaction temperature of 30℃.The synthesized Ag sheets exhibited good crystalline nature despite of their network structure and low synthetic temperature.We also investigated the effect of reaction conditions for the formation of the Ag sheets.In addition,using the Ag sheets as a sacrificial template,we could make hollow Au sheets via galvanic replacement.