To determine the root cause of a bare-spot defect in a hot-dip galvanized boron-added steel sheet,we performed metallurgical characterizations using time-of-flight secondary ion mass spectrometry(ToF-SIMS)in addition ...To determine the root cause of a bare-spot defect in a hot-dip galvanized boron-added steel sheet,we performed metallurgical characterizations using time-of-flight secondary ion mass spectrometry(ToF-SIMS)in addition to glow discharge optical emission spectrometry,field-emission scanning electron microscopy(FE-SEM),and energy dispersive spectroscopy.Mn and B enrichments on the steel surface in the bare-spot area were detected through various methods.FE-SEM revealed external oxide nodules and zinc droplets,which indicated poor wettability.ToF-SIMS further revealed considerably more detailed lateral and depth distributions of Mn,B,and Al.The formation of external Mn-B compound oxides on the steel surface prior to hot dipping,which substantially deteriorated the wettability and prevented the formation of a Fe_(2)Al_(5)inhibition layer,resulted in the formation of a bare-spot defect.ToF-SIMS mapping of Al ion proved that a slight reaction still occurred between the dissolved Al in the molten zinc bath and steel substrate,although no evident Fe_(2)Al_(5)inhibition layer formed in the bare-spot area.展开更多
The causes of tiny spot defects on the surface of hot-dip galvanized automotive steel sheets were studied using scanning electron microscopy(SEM)and energy dispersive spectrometer(EDS),and effective control measures w...The causes of tiny spot defects on the surface of hot-dip galvanized automotive steel sheets were studied using scanning electron microscopy(SEM)and energy dispersive spectrometer(EDS),and effective control measures were introduced.The results show that rubbing against the top roller after galvanizing is easy due to the local thickness of tiny spot defect location coating;therefore,the surface morphology is different from the normal part.Three kinds of defects,namely zinc slag,small slivers,and pitting,are likely to cause local thickening of the coating after galvanizing,leading to the formation of tiny spots.Therefore,resolving the three types of defects can effectively control the generation of tiny spot defects.Among them,due to the hereditary nature of the small sliver defect,focusing on its control and supervision is necessary.展开更多
The present work aimed at using rare earth lanthanum salt and trimethoxy(viny)silance as chromate substitutes for galvanized steel passivation, in contrast to zinc coating samples treated with chromate.The corrosion...The present work aimed at using rare earth lanthanum salt and trimethoxy(viny)silance as chromate substitutes for galvanized steel passivation, in contrast to zinc coating samples treated with chromate.The corrosion resistance was assessed by electrochemical impedance spectroscopy(EIS) and neutral salt spray tests(NSS).Scanning electron microscopy(SEM) was used to characterize the sample surfaces.The organic coating adhesion on the panel was also investigated via varnishes-cross cut tests.The results indicated that rare earth and silane two-step treatment gave more effective anticorrosion performance than Cr, which also provided good paint adhesion.The coating formation mechanism was also discussed.展开更多
A complex film on hot-dip galvanized steel sheet(HDG) was prepared by immersing the sheet in 0.1wt.% Ce(NO3)3 solution and 5vol.% silane solution in turn.The corrosion protection of the complex film was evaluated ...A complex film on hot-dip galvanized steel sheet(HDG) was prepared by immersing the sheet in 0.1wt.% Ce(NO3)3 solution and 5vol.% silane solution in turn.The corrosion protection of the complex film was evaluated by potentiodynamic linear polarization(LPR), electrochemical impendence spectra(EIS) and natural salt spray(NSS) tests and compared with that of single cerium film and silane film.The results showed that, the presence of these films on the zinc coating hindered corrosion reaction by reducing the rate of both anodic and cathodic reaction in the corrosion process, and the corrosion protection of the complex film was much better than that of single cerium film or silane film and closed to that of chromate film, because the polarization resistance Rp and electrochemical impendence were increased markedly.Microstructure and chemical composition of these pretreated films were also investigated by scanning electron microscopy(SEM) and AES.展开更多
A novel cerium-tannic acid passivation treatment was performed on galvanized steel. The corrosion resistance of cerium-tannic passivated samples was tested by dropping test with 0.5 wt.% CuSO4 aqueous solution. The ma...A novel cerium-tannic acid passivation treatment was performed on galvanized steel. The corrosion resistance of cerium-tannic passivated samples was tested by dropping test with 0.5 wt.% CuSO4 aqueous solution. The mass loss per unit area of passivated samples was measured after the corrosion in 0.5 mol/L NaCl + 0.005 mol/L H2SO4 at room temperature for 96 h. The electrochemical behaviors of cerium, tannic acid, and cerium-tannic acid passivated samples on galvanized steel in 0.5 mol/L NaCl solution were investigated by polarization curves and electrochemical impendence spectra. The corrosion equivalent circuit was established according to the impedance characteristics. The results show that cerium-tannic acid treated samples exhibit better corrosion resistance than the sole cerium or tannic acid treated samples under the same condition. The mechanism of synergistic effect for cerium-tannic acid passivation on galvanized steel was discussed.展开更多
A laser lap welding process for zinc-coated steel has a well-known unsolved problem-porosity formation. The boiling temperature of coated zinc is lower than the melting temperature of the base metal, which is steel. I...A laser lap welding process for zinc-coated steel has a well-known unsolved problem-porosity formation. The boiling temperature of coated zinc is lower than the melting temperature of the base metal, which is steel. In the autogenous laser welding, the zinc vapor generates from the lapped surfaces expels the molten pool and the expulsion causes numerous weld defects, such as spatters and blow holes on the weld surface and porosity inside the welds. The laser-arc hybrid welding was suggested as an alternative method for the laser lap welding because the arc can preheat or post-beat the weldment according to the arrangement of the laser beam and the arc. CO2 laser-micro plasma hybrid welding was applied to the lap welding of zinc-coated steel with zero-gap. The relationships among the weld quality and process parameters of the laser-arc arrangement, and the laser-arc interspacing distance and arc current were investigated using a full-factorial experimental design. The effect of laser-arc arrangement is dominant because the leading plasma arc partially melts the upper steel sheets and vaporizes or oxidizes the coated zinc on the lapped surfaces. Compared with the result from the laser-TIG hybrid welding, the heat input from arc can be reduced by 40%.展开更多
The influence of silane coupling agent on the film forming of galvanized steel treated with cerium salt was studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), and the corrosi...The influence of silane coupling agent on the film forming of galvanized steel treated with cerium salt was studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), and the corrosion resistance of conversion films was analyzed by electro interstitial scanning (EIS). The results show that silane coupling agent KH-570 has significant influence on the compactness and homogeneity of cerium conversion films, and the process of film forming is promoted by increasing the content of tervalent and tetravalent cerium oxide. The impedance value of the cerium conversion film, especially modified with KH-570, is greater than that of the base metal, which reveals that it is necessary to add silane coupling agent to the film-forming solution in order to improve the corrosion resistance of the conversion film.展开更多
To improve the corrosion resistance of phosphate coatings, the phosphated hot-dip galvanized (HDG) steel was post-sealed with cerium nitrate solution. The morphology, composition, corrosion resistance of the coatings ...To improve the corrosion resistance of phosphate coatings, the phosphated hot-dip galvanized (HDG) steel was post-sealed with cerium nitrate solution. The morphology, composition, corrosion resistance of the coatings was investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and neutral salt spray (NSS) tests. The results show that after post-sealing the phosphated HDG samples with cerium nitrate solution, the pores among the zinc phosphate crystals are sealed by the compounds containing phosphorus, oxygen and cerium; the zinc phosphate crystals are covered by the flocculent cerium compounds; and the continuous composite coatings are formed on HDG steel. The corrosion resistance of the composite coatings, which increases with the increase in phosphating time and cerium nitrate post-sealing time, is far higher than that of the single phosphate coatings. The composite coatings with the optimal corrosion resistance are obtained for phosphating 300 s and post-sealing 300 s; and the corrosion resistance is more outstanding than that of the chromate coatings.展开更多
The corrosion behavior and mechanism of hot-dip galvanized steel and interstitial-free (IF) substrate with alkaline mud adhesion were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), ...The corrosion behavior and mechanism of hot-dip galvanized steel and interstitial-free (IF) substrate with alkaline mud adhesion were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and linear polarization. The results show that non-uniform corrosion occurs on the galvanized steel and IF substrate during 250 h with the mud adhesion. The corrosion products on the galvanized steel are very loose and porous, which are mainly ZnO, Zn5(OH)8C12·H2O and Zn(OH)2, and Fe-Zn alloy layer with a lower corrosion rate is exposed on the galvanized steel surface; however, the corrosion products on IF substrate are considerably harder and denser, whose compositions of rust are mainly FeOOH and Fe3O4, and several pits appear on their surface. The results of continuous EIS and linear polarization measurements exhibit a corrosion mechanism, that is, under activation control, the charge transfer resistances present different tendencies between the galvanized steel and IF substrate; in addition, the evolution of linear polarization resistances is similar to that of charge transfer resistances. The higher contents of dissolved oxygen and Cl^- ions in the mud play an important role in accelerating the corrosion.展开更多
Powdering/exfoliating of coatings and scratching galvanized steels and high strength steels (HSS), are the main forms of surface damage in the forming of which result in increased die maintenance cost and scrap rate...Powdering/exfoliating of coatings and scratching galvanized steels and high strength steels (HSS), are the main forms of surface damage in the forming of which result in increased die maintenance cost and scrap rate. In this study, a special rectangular box was developed to investigate the behavior and characteristics of surface damage in sheet metal forming (SMF) processes. U-channel forming tests were conducted to study the effect of tool hardness on surface damage in the forming of high strength steels and galvanized steels (hot-dip galvanized and galvannealed steels). Experimental results indicate that sheet deformation mode influences the severity of surface damage in SMF and surface damage occurs easily at the regions where sheet specimen deforms under the action of compressive stress. Die corner is the position where surface damage initiates. For HSS sheet, surface damage is of major interest due to high forming pressure. The HSS and hot-dip galvanized steels show improved ability of damage-resistance with increased hardness of the forming tool. However, for galvannealed steel it is not the forming tool with the highest hardness value that performs best.展开更多
Wettability of Zn-Al alloy melt on the pure iron substrate at 450℃was studied.The effect of Al content(Zn,Zn-1Al,Zn-2Al,Zn-3Al,Zn-4Al,and Zn-5Al)on the wetting behavior and interfacial reaction was investigated by hi...Wettability of Zn-Al alloy melt on the pure iron substrate at 450℃was studied.The effect of Al content(Zn,Zn-1Al,Zn-2Al,Zn-3Al,Zn-4Al,and Zn-5Al)on the wetting behavior and interfacial reaction was investigated by high-temperature contact angle measuring device and scanning electron microscope(SEM).The results show that,with the increase of Al content,the initial contact angle of the molten alloy on the substrate decreases gradually and the wettability increases gradually.Compared with the initial contact angle,the final contact angle is slightly reduced,because the Fe-Al inhibition layer is preferentially formed at the interface when adding Al to the alloy.The presence of Al will promote the occurrence of the reactive wetting,leading to an insignificant wetting spreading process,and the final contact angle negligibly differs from the initial contact angle.The adhesion work and charge density distributions of interface systems were calculated based on the first-principles.The results show that the adhesion work of the Fe/Zn and Fe/(Zn-Al)interface model is 2.0171 J/m^(2)and 13.7944 J/m^(2),respectively.The addition of Al greatly increases the adhesion work between alloy melt and iron substrate.Compared with the Zn-Fe and Al-Fe interface models,it can be seen that a significant charge migration phenomenon occurs between the interfaces.The amount of charge migration in the Al-Fe interface model is much larger than that in the Zn-Fe interface model,indicating that the bonding between Al-Fe atoms can occur more easily and the interaction between Al-Fe interfaces is stronger.This is also the reason why the addition of Al increases the adhesion work between interfaces.展开更多
Resistance spot brazing was used to perform the lap test of pure aluminum 1060 and SGCC hot-dip galvanized steel plate,the joint interface structure was studied,and the mechanical properties of the joint were tested.T...Resistance spot brazing was used to perform the lap test of pure aluminum 1060 and SGCC hot-dip galvanized steel plate,the joint interface structure was studied,and the mechanical properties of the joint were tested.The results show that the aluminum-silicon(Al-Si)alloy solder used in the test has good wetting,and an intermetallic compound with a double-layer structure and uneven thickness is produced at the welded joint interface after welding.The thickness is<10μm.The welding current is at 7.8 kA,the tensile shear load of the joint reaches a peak value of about 4.72 kN.Under the same process parameters,the tensile shear load of the resistance spot brazed joint is significantly higher than that of the spot welded joint.The joint fracture mostly occurs on the aluminum plate side,and mainly at the heat-affected zone and not at the welding point.It indicates that the quality of the spot brazed joint is good,but due to the local"unbrazed"defect on the aluminum side interface of the weld,tensile stress will occur at the weld interface and the stress effect on the intermetallic compound.It is easy to produce cracks.展开更多
The process properties and interface behavior of CO_2 laser brazing with automatic wire feed for galvanized steel sheets were investigated, in which the brazing filler metal was CuSi3 and no flux was used. As to the a...The process properties and interface behavior of CO_2 laser brazing with automatic wire feed for galvanized steel sheets were investigated, in which the brazing filler metal was CuSi3 and no flux was used. As to the appearance quality of the brazing seams, the roles of the processing parameters, such as brazing speed, wire feeding rate, inclination and feeding direction of the wire, laser power, spot diameter and heating position, were assessed. The further investigation indicates that the behavior of the active elements Si, Mn and Zn are significantly influenced by energy input. At the interface, the microstructure of the base metal was composed of columnar crystals and the acicular α solid solution was found on the filler metal side.展开更多
Hot-dip galvanized sheet is wildly used in construction,household appliances,ship,vehicle and vessel building and machinery,etc.In last ten years,with the development of automobile industry,the anti-eorrosion requirem...Hot-dip galvanized sheet is wildly used in construction,household appliances,ship,vehicle and vessel building and machinery,etc.In last ten years,with the development of automobile industry,the anti-eorrosion requirements for car body are increasingly strict,by which the rapid development in technology has been promoted.The application of hot-dip galvanized sheet,technological progress in production and some Chinese large units were introduced.展开更多
In this work, laser heat conduction lap welding(LHCLW) of AZ31B magnesium alloy sheet and DP780galvanized steel sheet was carried out by the defocused laser beam. The effects of laser power on the microstructure and m...In this work, laser heat conduction lap welding(LHCLW) of AZ31B magnesium alloy sheet and DP780galvanized steel sheet was carried out by the defocused laser beam. The effects of laser power on the microstructure and mechanical properties of the joint were studied. The pros and cons of the joint were identified and evaluated by measuring the tensile shear strength, microhardness and microstructure observation. The formation mechanism of various phases at the Mg/steel interface was analyzed. The results indicated that the galvanized layer could promote the metallurgical bonding between magnesium alloy and steel by improving the diffusion ability of molten magnesium alloy at the steel interface and reacting with Mg, so as to enhance the strength of the joint. A continuous dense layered eutectic structure(α-Mg+MgZn) was formed at the interface of the joint, while MgZn_(2)and MgZn phase was formed at the weld edge zone and heat affective zone(HAZ), whereas no reaction layer was generated between the uncoated steel and magnesium alloy. A sound joint could be obtained at 2.5 kW, and the corresponding tensile shear strength reached the maximum value of 42.9 N/mm. The strength was slightly reduced at 2.6 kW due to the existence of microcracks in the eutectic reaction layer.展开更多
As the galvanized steels used for electrical and office appliances has achieved a complete chrome-free production worldwide,surface treatment technologies have entered a new phase of development.Grenter effort will be...As the galvanized steels used for electrical and office appliances has achieved a complete chrome-free production worldwide,surface treatment technologies have entered a new phase of development.Grenter effort will be made in exploring new frontier for future surface treatment technologies.A greater contribution will be made for environmental protection,energy-saving and resource-saving,to prevent globalwarming.展开更多
Four kinds of galvanized steel sheets having different surface roughness values were used to prepare the steel sheets with a self-lubricated coating. The effects of surface roughness on the surface lubrication perform...Four kinds of galvanized steel sheets having different surface roughness values were used to prepare the steel sheets with a self-lubricated coating. The effects of surface roughness on the surface lubrication performance of the steel sheets were examined using a friction coefficient tester. Results revealed large dynamic friction coefficients for the galvanized steel sheets, which increased remarkably with surface roughness. Once the self-lubricated coating was applied, significant drops in the dynamic friction coefficients were measured. After the first stage of the friction test,the coefficients were almost unchanged, which reflected a weak dependence on the surface roughness of the self-lubricated steel sheets. However, the dynamic friction coefficients gradually increased as the test progressed, where these increase clearly correlated with the surface roughness of the self-lubricated steel sheets.展开更多
This paper focuses on introducing the manufacture technology of 1 770 MPa galvanized steel wires for stay cables applied to domestic bridges.During the development practices of high strength galvanized wire for stay c...This paper focuses on introducing the manufacture technology of 1 770 MPa galvanized steel wires for stay cables applied to domestic bridges.During the development practices of high strength galvanized wire for stay cables used in Sutong Bridge,Baosteel has established three key technologies based on research of manufacture technology and technical innovation.The three key technologies are:"Double Tensioning + limiter die" process,"dominant process + fine adjustment" in integrated optimization technology and "three-level control" in hot dip galvanization.With these key technologies,Baosteel has produced 1 770 MPa galvanized wires for stay cable,which has high tensile strength,low relaxation and good torsion performances.展开更多
An important consideration when using hot-dip galvanized tubular structures is the uncertainty of the joint behaviour due to the possible reduction in the global joint resistance produced by the vent holes required fo...An important consideration when using hot-dip galvanized tubular structures is the uncertainty of the joint behaviour due to the possible reduction in the global joint resistance produced by the vent holes required for the galvanizing process. This paper assesses the effect on the joint strength of the angle between the brace members and the chord in a K- or N-joints made with rectangular hollow sections. The study is focused on the case when those brace members include characteristic holes required for the hot-dip galvanizing process. To accomplish the objective of the proposed work, some tests on full-scale K- and N-joints, including angles of 35°, 45°, 55° and 90°, were carried out. The experimental work was complemented by a validated numerical simulation in order to give some design recommendations and to extend the research to other joint configurations.展开更多
A cradle-to-grave life cycle assessment is done to identify the environmental impacts of chromated copper arsenate (CCA)-treated timber used for highway guard rail posts, to understand the processes that contribute to...A cradle-to-grave life cycle assessment is done to identify the environmental impacts of chromated copper arsenate (CCA)-treated timber used for highway guard rail posts, to understand the processes that contribute to the total impacts, and to determine how the impacts compare to the primary alternative product, galvanized steel posts. Guard rail posts are the supporting structures for highway guard rails. Transportation engineers, as well as public and regulatory interests, have increasing need to understand the environmental implications of guard rail post selection, in addition to factors such as costs and service performance. This study uses a life cycle inventory (LCI) to catalogue the input and output data from guard rail post manufacture, service life, and disposition, and a life cycle impact assessment (LCIA) to assess anthropogenic and net greenhouse gas (GHG), acidification, smog, ecotoxicity, and eutrophication potentially resulting from life cycle air emissions. Other indicators of interest also are tracked, such as fossil fuel and water use. Comparisons of guard rail post products are made at a functional unit of one post per year of service. This life cycle assessment (LCA) finds that the manufacture, use, and disposition of CCA-treated wood guard rails offers lower fossil fuel use and lower anthropogenic and net GHG emissions, acidification, smog potential, and ecotoxicity environmental impacts than impact indicator values for galvanized steel posts. Water use and eutrophication impact indicator values for CCA-treated guard rail posts are greater than impact indicator values for galvanized steel guard rail posts.展开更多
文摘To determine the root cause of a bare-spot defect in a hot-dip galvanized boron-added steel sheet,we performed metallurgical characterizations using time-of-flight secondary ion mass spectrometry(ToF-SIMS)in addition to glow discharge optical emission spectrometry,field-emission scanning electron microscopy(FE-SEM),and energy dispersive spectroscopy.Mn and B enrichments on the steel surface in the bare-spot area were detected through various methods.FE-SEM revealed external oxide nodules and zinc droplets,which indicated poor wettability.ToF-SIMS further revealed considerably more detailed lateral and depth distributions of Mn,B,and Al.The formation of external Mn-B compound oxides on the steel surface prior to hot dipping,which substantially deteriorated the wettability and prevented the formation of a Fe_(2)Al_(5)inhibition layer,resulted in the formation of a bare-spot defect.ToF-SIMS mapping of Al ion proved that a slight reaction still occurred between the dissolved Al in the molten zinc bath and steel substrate,although no evident Fe_(2)Al_(5)inhibition layer formed in the bare-spot area.
文摘The causes of tiny spot defects on the surface of hot-dip galvanized automotive steel sheets were studied using scanning electron microscopy(SEM)and energy dispersive spectrometer(EDS),and effective control measures were introduced.The results show that rubbing against the top roller after galvanizing is easy due to the local thickness of tiny spot defect location coating;therefore,the surface morphology is different from the normal part.Three kinds of defects,namely zinc slag,small slivers,and pitting,are likely to cause local thickening of the coating after galvanizing,leading to the formation of tiny spots.Therefore,resolving the three types of defects can effectively control the generation of tiny spot defects.Among them,due to the hereditary nature of the small sliver defect,focusing on its control and supervision is necessary.
文摘The present work aimed at using rare earth lanthanum salt and trimethoxy(viny)silance as chromate substitutes for galvanized steel passivation, in contrast to zinc coating samples treated with chromate.The corrosion resistance was assessed by electrochemical impedance spectroscopy(EIS) and neutral salt spray tests(NSS).Scanning electron microscopy(SEM) was used to characterize the sample surfaces.The organic coating adhesion on the panel was also investigated via varnishes-cross cut tests.The results indicated that rare earth and silane two-step treatment gave more effective anticorrosion performance than Cr, which also provided good paint adhesion.The coating formation mechanism was also discussed.
基金supported by the United Nations Common Fund for Commodities (CFC/LZSG/12)
文摘A complex film on hot-dip galvanized steel sheet(HDG) was prepared by immersing the sheet in 0.1wt.% Ce(NO3)3 solution and 5vol.% silane solution in turn.The corrosion protection of the complex film was evaluated by potentiodynamic linear polarization(LPR), electrochemical impendence spectra(EIS) and natural salt spray(NSS) tests and compared with that of single cerium film and silane film.The results showed that, the presence of these films on the zinc coating hindered corrosion reaction by reducing the rate of both anodic and cathodic reaction in the corrosion process, and the corrosion protection of the complex film was much better than that of single cerium film or silane film and closed to that of chromate film, because the polarization resistance Rp and electrochemical impendence were increased markedly.Microstructure and chemical composition of these pretreated films were also investigated by scanning electron microscopy(SEM) and AES.
基金supported by the Science and Technology Foundation of the Department of Education of Jiangxi Province,China (No. GJJ08205)
文摘A novel cerium-tannic acid passivation treatment was performed on galvanized steel. The corrosion resistance of cerium-tannic passivated samples was tested by dropping test with 0.5 wt.% CuSO4 aqueous solution. The mass loss per unit area of passivated samples was measured after the corrosion in 0.5 mol/L NaCl + 0.005 mol/L H2SO4 at room temperature for 96 h. The electrochemical behaviors of cerium, tannic acid, and cerium-tannic acid passivated samples on galvanized steel in 0.5 mol/L NaCl solution were investigated by polarization curves and electrochemical impendence spectra. The corrosion equivalent circuit was established according to the impedance characteristics. The results show that cerium-tannic acid treated samples exhibit better corrosion resistance than the sole cerium or tannic acid treated samples under the same condition. The mechanism of synergistic effect for cerium-tannic acid passivation on galvanized steel was discussed.
文摘A laser lap welding process for zinc-coated steel has a well-known unsolved problem-porosity formation. The boiling temperature of coated zinc is lower than the melting temperature of the base metal, which is steel. In the autogenous laser welding, the zinc vapor generates from the lapped surfaces expels the molten pool and the expulsion causes numerous weld defects, such as spatters and blow holes on the weld surface and porosity inside the welds. The laser-arc hybrid welding was suggested as an alternative method for the laser lap welding because the arc can preheat or post-beat the weldment according to the arrangement of the laser beam and the arc. CO2 laser-micro plasma hybrid welding was applied to the lap welding of zinc-coated steel with zero-gap. The relationships among the weld quality and process parameters of the laser-arc arrangement, and the laser-arc interspacing distance and arc current were investigated using a full-factorial experimental design. The effect of laser-arc arrangement is dominant because the leading plasma arc partially melts the upper steel sheets and vaporizes or oxidizes the coated zinc on the lapped surfaces. Compared with the result from the laser-TIG hybrid welding, the heat input from arc can be reduced by 40%.
文摘The influence of silane coupling agent on the film forming of galvanized steel treated with cerium salt was studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), and the corrosion resistance of conversion films was analyzed by electro interstitial scanning (EIS). The results show that silane coupling agent KH-570 has significant influence on the compactness and homogeneity of cerium conversion films, and the process of film forming is promoted by increasing the content of tervalent and tetravalent cerium oxide. The impedance value of the cerium conversion film, especially modified with KH-570, is greater than that of the base metal, which reveals that it is necessary to add silane coupling agent to the film-forming solution in order to improve the corrosion resistance of the conversion film.
文摘To improve the corrosion resistance of phosphate coatings, the phosphated hot-dip galvanized (HDG) steel was post-sealed with cerium nitrate solution. The morphology, composition, corrosion resistance of the coatings was investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and neutral salt spray (NSS) tests. The results show that after post-sealing the phosphated HDG samples with cerium nitrate solution, the pores among the zinc phosphate crystals are sealed by the compounds containing phosphorus, oxygen and cerium; the zinc phosphate crystals are covered by the flocculent cerium compounds; and the continuous composite coatings are formed on HDG steel. The corrosion resistance of the composite coatings, which increases with the increase in phosphating time and cerium nitrate post-sealing time, is far higher than that of the single phosphate coatings. The composite coatings with the optimal corrosion resistance are obtained for phosphating 300 s and post-sealing 300 s; and the corrosion resistance is more outstanding than that of the chromate coatings.
基金supported by the National Natural Science Foundation of China(No.50571022)the National Science & Technology Infrastructure Development Program of China(No.2005DKA10400)
文摘The corrosion behavior and mechanism of hot-dip galvanized steel and interstitial-free (IF) substrate with alkaline mud adhesion were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and linear polarization. The results show that non-uniform corrosion occurs on the galvanized steel and IF substrate during 250 h with the mud adhesion. The corrosion products on the galvanized steel are very loose and porous, which are mainly ZnO, Zn5(OH)8C12·H2O and Zn(OH)2, and Fe-Zn alloy layer with a lower corrosion rate is exposed on the galvanized steel surface; however, the corrosion products on IF substrate are considerably harder and denser, whose compositions of rust are mainly FeOOH and Fe3O4, and several pits appear on their surface. The results of continuous EIS and linear polarization measurements exhibit a corrosion mechanism, that is, under activation control, the charge transfer resistances present different tendencies between the galvanized steel and IF substrate; in addition, the evolution of linear polarization resistances is similar to that of charge transfer resistances. The higher contents of dissolved oxygen and Cl^- ions in the mud play an important role in accelerating the corrosion.
基金supported by the National Natural Science Foundation of China under grant No. 50605043
文摘Powdering/exfoliating of coatings and scratching galvanized steels and high strength steels (HSS), are the main forms of surface damage in the forming of which result in increased die maintenance cost and scrap rate. In this study, a special rectangular box was developed to investigate the behavior and characteristics of surface damage in sheet metal forming (SMF) processes. U-channel forming tests were conducted to study the effect of tool hardness on surface damage in the forming of high strength steels and galvanized steels (hot-dip galvanized and galvannealed steels). Experimental results indicate that sheet deformation mode influences the severity of surface damage in SMF and surface damage occurs easily at the regions where sheet specimen deforms under the action of compressive stress. Die corner is the position where surface damage initiates. For HSS sheet, surface damage is of major interest due to high forming pressure. The HSS and hot-dip galvanized steels show improved ability of damage-resistance with increased hardness of the forming tool. However, for galvannealed steel it is not the forming tool with the highest hardness value that performs best.
基金Funded by the National Natural Science Foundation of China(Nos.51971039,51671037)the Natural Science Research Project of Higher Education of Jiangsu,China(No.19KJA530001)Postgraduate Research&Practice Inovation Program of Jiangsu Province(No.KYCX20-2574)
文摘Wettability of Zn-Al alloy melt on the pure iron substrate at 450℃was studied.The effect of Al content(Zn,Zn-1Al,Zn-2Al,Zn-3Al,Zn-4Al,and Zn-5Al)on the wetting behavior and interfacial reaction was investigated by high-temperature contact angle measuring device and scanning electron microscope(SEM).The results show that,with the increase of Al content,the initial contact angle of the molten alloy on the substrate decreases gradually and the wettability increases gradually.Compared with the initial contact angle,the final contact angle is slightly reduced,because the Fe-Al inhibition layer is preferentially formed at the interface when adding Al to the alloy.The presence of Al will promote the occurrence of the reactive wetting,leading to an insignificant wetting spreading process,and the final contact angle negligibly differs from the initial contact angle.The adhesion work and charge density distributions of interface systems were calculated based on the first-principles.The results show that the adhesion work of the Fe/Zn and Fe/(Zn-Al)interface model is 2.0171 J/m^(2)and 13.7944 J/m^(2),respectively.The addition of Al greatly increases the adhesion work between alloy melt and iron substrate.Compared with the Zn-Fe and Al-Fe interface models,it can be seen that a significant charge migration phenomenon occurs between the interfaces.The amount of charge migration in the Al-Fe interface model is much larger than that in the Zn-Fe interface model,indicating that the bonding between Al-Fe atoms can occur more easily and the interaction between Al-Fe interfaces is stronger.This is also the reason why the addition of Al increases the adhesion work between interfaces.
文摘Resistance spot brazing was used to perform the lap test of pure aluminum 1060 and SGCC hot-dip galvanized steel plate,the joint interface structure was studied,and the mechanical properties of the joint were tested.The results show that the aluminum-silicon(Al-Si)alloy solder used in the test has good wetting,and an intermetallic compound with a double-layer structure and uneven thickness is produced at the welded joint interface after welding.The thickness is<10μm.The welding current is at 7.8 kA,the tensile shear load of the joint reaches a peak value of about 4.72 kN.Under the same process parameters,the tensile shear load of the resistance spot brazed joint is significantly higher than that of the spot welded joint.The joint fracture mostly occurs on the aluminum plate side,and mainly at the heat-affected zone and not at the welding point.It indicates that the quality of the spot brazed joint is good,but due to the local"unbrazed"defect on the aluminum side interface of the weld,tensile stress will occur at the weld interface and the stress effect on the intermetallic compound.It is easy to produce cracks.
文摘The process properties and interface behavior of CO_2 laser brazing with automatic wire feed for galvanized steel sheets were investigated, in which the brazing filler metal was CuSi3 and no flux was used. As to the appearance quality of the brazing seams, the roles of the processing parameters, such as brazing speed, wire feeding rate, inclination and feeding direction of the wire, laser power, spot diameter and heating position, were assessed. The further investigation indicates that the behavior of the active elements Si, Mn and Zn are significantly influenced by energy input. At the interface, the microstructure of the base metal was composed of columnar crystals and the acicular α solid solution was found on the filler metal side.
基金Item Sponsored by National Natural Science Foundation of China(59995440)
文摘Hot-dip galvanized sheet is wildly used in construction,household appliances,ship,vehicle and vessel building and machinery,etc.In last ten years,with the development of automobile industry,the anti-eorrosion requirements for car body are increasingly strict,by which the rapid development in technology has been promoted.The application of hot-dip galvanized sheet,technological progress in production and some Chinese large units were introduced.
基金Projects(51705219, 51905227) supported by the National Natural Science Foundation of ChinaProject(BK20200915) supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(19KJB460013) supported by the General University Science Research Project of Jiangsu Province,China。
文摘In this work, laser heat conduction lap welding(LHCLW) of AZ31B magnesium alloy sheet and DP780galvanized steel sheet was carried out by the defocused laser beam. The effects of laser power on the microstructure and mechanical properties of the joint were studied. The pros and cons of the joint were identified and evaluated by measuring the tensile shear strength, microhardness and microstructure observation. The formation mechanism of various phases at the Mg/steel interface was analyzed. The results indicated that the galvanized layer could promote the metallurgical bonding between magnesium alloy and steel by improving the diffusion ability of molten magnesium alloy at the steel interface and reacting with Mg, so as to enhance the strength of the joint. A continuous dense layered eutectic structure(α-Mg+MgZn) was formed at the interface of the joint, while MgZn_(2)and MgZn phase was formed at the weld edge zone and heat affective zone(HAZ), whereas no reaction layer was generated between the uncoated steel and magnesium alloy. A sound joint could be obtained at 2.5 kW, and the corresponding tensile shear strength reached the maximum value of 42.9 N/mm. The strength was slightly reduced at 2.6 kW due to the existence of microcracks in the eutectic reaction layer.
文摘As the galvanized steels used for electrical and office appliances has achieved a complete chrome-free production worldwide,surface treatment technologies have entered a new phase of development.Grenter effort will be made in exploring new frontier for future surface treatment technologies.A greater contribution will be made for environmental protection,energy-saving and resource-saving,to prevent globalwarming.
文摘Four kinds of galvanized steel sheets having different surface roughness values were used to prepare the steel sheets with a self-lubricated coating. The effects of surface roughness on the surface lubrication performance of the steel sheets were examined using a friction coefficient tester. Results revealed large dynamic friction coefficients for the galvanized steel sheets, which increased remarkably with surface roughness. Once the self-lubricated coating was applied, significant drops in the dynamic friction coefficients were measured. After the first stage of the friction test,the coefficients were almost unchanged, which reflected a weak dependence on the surface roughness of the self-lubricated steel sheets. However, the dynamic friction coefficients gradually increased as the test progressed, where these increase clearly correlated with the surface roughness of the self-lubricated steel sheets.
基金National Science and Technology Planning Project(No.2006BAG04B02)
文摘This paper focuses on introducing the manufacture technology of 1 770 MPa galvanized steel wires for stay cables applied to domestic bridges.During the development practices of high strength galvanized wire for stay cables used in Sutong Bridge,Baosteel has established three key technologies based on research of manufacture technology and technical innovation.The three key technologies are:"Double Tensioning + limiter die" process,"dominant process + fine adjustment" in integrated optimization technology and "three-level control" in hot dip galvanization.With these key technologies,Baosteel has produced 1 770 MPa galvanized wires for stay cable,which has high tensile strength,low relaxation and good torsion performances.
文摘An important consideration when using hot-dip galvanized tubular structures is the uncertainty of the joint behaviour due to the possible reduction in the global joint resistance produced by the vent holes required for the galvanizing process. This paper assesses the effect on the joint strength of the angle between the brace members and the chord in a K- or N-joints made with rectangular hollow sections. The study is focused on the case when those brace members include characteristic holes required for the hot-dip galvanizing process. To accomplish the objective of the proposed work, some tests on full-scale K- and N-joints, including angles of 35°, 45°, 55° and 90°, were carried out. The experimental work was complemented by a validated numerical simulation in order to give some design recommendations and to extend the research to other joint configurations.
文摘A cradle-to-grave life cycle assessment is done to identify the environmental impacts of chromated copper arsenate (CCA)-treated timber used for highway guard rail posts, to understand the processes that contribute to the total impacts, and to determine how the impacts compare to the primary alternative product, galvanized steel posts. Guard rail posts are the supporting structures for highway guard rails. Transportation engineers, as well as public and regulatory interests, have increasing need to understand the environmental implications of guard rail post selection, in addition to factors such as costs and service performance. This study uses a life cycle inventory (LCI) to catalogue the input and output data from guard rail post manufacture, service life, and disposition, and a life cycle impact assessment (LCIA) to assess anthropogenic and net greenhouse gas (GHG), acidification, smog, ecotoxicity, and eutrophication potentially resulting from life cycle air emissions. Other indicators of interest also are tracked, such as fossil fuel and water use. Comparisons of guard rail post products are made at a functional unit of one post per year of service. This life cycle assessment (LCA) finds that the manufacture, use, and disposition of CCA-treated wood guard rails offers lower fossil fuel use and lower anthropogenic and net GHG emissions, acidification, smog potential, and ecotoxicity environmental impacts than impact indicator values for galvanized steel posts. Water use and eutrophication impact indicator values for CCA-treated guard rail posts are greater than impact indicator values for galvanized steel guard rail posts.