In this paper.by using a minimax inequality obtained by the author,someexistence theorems of Pareto equilibria for multicriteria games without compactness,continuity and concavity are proved in lope toplogical vector ...In this paper.by using a minimax inequality obtained by the author,someexistence theorems of Pareto equilibria for multicriteria games without compactness,continuity and concavity are proved in lope toplogical vector spaces and reflexive Banach spaces.展开更多
There are a few studies that focus on solution methods for finding a Nash equilibrium of zero-sum games. We discuss the use of Karmarkar’s interior point method to solve the Nash equilibrium problems of a zero-sum ga...There are a few studies that focus on solution methods for finding a Nash equilibrium of zero-sum games. We discuss the use of Karmarkar’s interior point method to solve the Nash equilibrium problems of a zero-sum game, and prove that it is theoretically a polynomial time algorithm. We implement the Karmarkar method, and a preliminary computational result shows that it performs well for zero-sum games. We also mention an affine scaling method that would help us compute Nash equilibria of general zero-sum games effectively.展开更多
A class of quasi-equilibrium problems and a class of constrained multiobjective games were introduced and studied in generalized convex spaces without linear structure. First, two existence theorems of solutions for q...A class of quasi-equilibrium problems and a class of constrained multiobjective games were introduced and studied in generalized convex spaces without linear structure. First, two existence theorems of solutions for quasi-equilibrium problems are proved in noncompact generalized convex spaces. Then, ar applications of the quasi-equilibrium existence theorem, several existence theorems of weighted Nash-equilibria and Pareto equilibria for the constrained multiobjective games are established in noncompact generalized convex spaces. These theorems improve, unify, and generalize the corresponding results of the multiobjective games in recent literatures.展开更多
It has recently been established that quantum strategies have great advantage over classical ones in quantum games. However, quantum states are easily affected by the quantum noise resulting in decoherence. In this pa...It has recently been established that quantum strategies have great advantage over classical ones in quantum games. However, quantum states are easily affected by the quantum noise resulting in decoherence. In this paper, we investigate the effect of quantum noise on the restricted quantum game in which one player is restricted in classical strategic space, another in quantum strategic space and only the quantum player is affected by the quantum noise. Our results show that in the maximally entangled state, no Nash equilibria exist in the range of 0 〈 p ≤ 0.422 (p is the quantum noise parameter), while two special Nash equilibria appear in the range of 0.422 〈 p 〈 1. The advantage that the quantum player diminished only in the limit of maximum quantum noise. Increasing the amount of quantum noise leads to the increase of the classical player's payoff and the reduction of the quantum player's payoff, but is helpful in forming two Nash equilibria.展开更多
A new class of generalized constrained multiobjective games is introduced and studied in locally FC-uniform spaces without convexity structure where the number of players may be finite or infinite and all payoff funct...A new class of generalized constrained multiobjective games is introduced and studied in locally FC-uniform spaces without convexity structure where the number of players may be finite or infinite and all payoff functions get their values in an infinite-dimensional space. By using a Himmelberg type fixed point theorem in locally FC-uniform spaces due to author, some existence theorems of weak Paxeto equilibria for the generalized constrained multiobjective games are established in locally FC-uniform spaces. These theorems improve, unify and generalize the corresponding results in recent literatures.展开更多
A scalar equilibrium (SE) is defined for n-person prescriptive games in normal form. When a decision criterion (notion of rationality) is either agreed upon by the players or prescribed by an external arbiter, the res...A scalar equilibrium (SE) is defined for n-person prescriptive games in normal form. When a decision criterion (notion of rationality) is either agreed upon by the players or prescribed by an external arbiter, the resulting decision process is modeled by a suitable scalar transformation (utility function). Each n-tuple of von Neumann-Morgenstern utilities is transformed into a nonnegative scalar value between 0 and 1. Any n-tuple yielding a largest scalar value determines an SE, which is always a pure strategy profile. SEs can be computed much faster than Nash equilibria, for example;and the decision criterion need not be based on the players’ selfishness. To illustrate the SE, we define a compromise equilibrium, establish its Pareto optimality, and present examples comparing it to other solution concepts.展开更多
A new class of constrained multiobjective games with infinite players in noncompact locally convex H-spaces without linear structure are introduced and studied.By applying a Fan-Glicksberg type fixed point theorem for...A new class of constrained multiobjective games with infinite players in noncompact locally convex H-spaces without linear structure are introduced and studied.By applying a Fan-Glicksberg type fixed point theorem for upper semicontinuous set-valued mappings with closed acyclic values and a maximum theorem,several existence theorems of weighted Nath-equilibria and Pareto equilibria for the constrained multiobjective games are proved in noncompact locally convex H-spaces.These theorems improve,unify and generalize the corresponding results of the multiobjective games in recent literatures.展开更多
文摘In this paper.by using a minimax inequality obtained by the author,someexistence theorems of Pareto equilibria for multicriteria games without compactness,continuity and concavity are proved in lope toplogical vector spaces and reflexive Banach spaces.
文摘There are a few studies that focus on solution methods for finding a Nash equilibrium of zero-sum games. We discuss the use of Karmarkar’s interior point method to solve the Nash equilibrium problems of a zero-sum game, and prove that it is theoretically a polynomial time algorithm. We implement the Karmarkar method, and a preliminary computational result shows that it performs well for zero-sum games. We also mention an affine scaling method that would help us compute Nash equilibria of general zero-sum games effectively.
文摘A class of quasi-equilibrium problems and a class of constrained multiobjective games were introduced and studied in generalized convex spaces without linear structure. First, two existence theorems of solutions for quasi-equilibrium problems are proved in noncompact generalized convex spaces. Then, ar applications of the quasi-equilibrium existence theorem, several existence theorems of weighted Nash-equilibria and Pareto equilibria for the constrained multiobjective games are established in noncompact generalized convex spaces. These theorems improve, unify, and generalize the corresponding results of the multiobjective games in recent literatures.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374025).
文摘It has recently been established that quantum strategies have great advantage over classical ones in quantum games. However, quantum states are easily affected by the quantum noise resulting in decoherence. In this paper, we investigate the effect of quantum noise on the restricted quantum game in which one player is restricted in classical strategic space, another in quantum strategic space and only the quantum player is affected by the quantum noise. Our results show that in the maximally entangled state, no Nash equilibria exist in the range of 0 〈 p ≤ 0.422 (p is the quantum noise parameter), while two special Nash equilibria appear in the range of 0.422 〈 p 〈 1. The advantage that the quantum player diminished only in the limit of maximum quantum noise. Increasing the amount of quantum noise leads to the increase of the classical player's payoff and the reduction of the quantum player's payoff, but is helpful in forming two Nash equilibria.
基金the Natural Science Foundation of Education Department of Sichuan Province of China(No.07ZA092)the Foundation of Taiwan Science Council
文摘A new class of generalized constrained multiobjective games is introduced and studied in locally FC-uniform spaces without convexity structure where the number of players may be finite or infinite and all payoff functions get their values in an infinite-dimensional space. By using a Himmelberg type fixed point theorem in locally FC-uniform spaces due to author, some existence theorems of weak Paxeto equilibria for the generalized constrained multiobjective games are established in locally FC-uniform spaces. These theorems improve, unify and generalize the corresponding results in recent literatures.
文摘A scalar equilibrium (SE) is defined for n-person prescriptive games in normal form. When a decision criterion (notion of rationality) is either agreed upon by the players or prescribed by an external arbiter, the resulting decision process is modeled by a suitable scalar transformation (utility function). Each n-tuple of von Neumann-Morgenstern utilities is transformed into a nonnegative scalar value between 0 and 1. Any n-tuple yielding a largest scalar value determines an SE, which is always a pure strategy profile. SEs can be computed much faster than Nash equilibria, for example;and the decision criterion need not be based on the players’ selfishness. To illustrate the SE, we define a compromise equilibrium, establish its Pareto optimality, and present examples comparing it to other solution concepts.
文摘A new class of constrained multiobjective games with infinite players in noncompact locally convex H-spaces without linear structure are introduced and studied.By applying a Fan-Glicksberg type fixed point theorem for upper semicontinuous set-valued mappings with closed acyclic values and a maximum theorem,several existence theorems of weighted Nath-equilibria and Pareto equilibria for the constrained multiobjective games are proved in noncompact locally convex H-spaces.These theorems improve,unify and generalize the corresponding results of the multiobjective games in recent literatures.