Drought is one of the severe meteorological disasters and causes of serious losses for agricultural productions, and early assessment of drought hazard degree is critical in management of maize farming. This study pro...Drought is one of the severe meteorological disasters and causes of serious losses for agricultural productions, and early assessment of drought hazard degree is critical in management of maize farming. This study proposes a novel method for assessment of maize drought hazard in different growth stages. First, the study divided the maize growth period into four critical growth stages, including seeding, elongation, tasseling, and filling. Second, maize drought causal factors were selected and the fuzzy membership function was established. Finally, the study built a fuzzy gamma model to assess maize drought hazards, and the gamma 0.93 was finally established using Monte Carlo Analysis. Performing fuzzy gamma operation with 0.93 for gamma and classifying the area yielded a map of maize drought hazards with four zones of light, moderate, severe, and extreme droughts. Using actual field collected data, seven selected samples for drought hazard degree were examined, the model output proved to be a valid tool in the assessment maize drought hazard. This model will be very useful in analyzing the spatial change of maize drought hazard and influence on yield, which is significant for drought management in major agricultural areas.展开更多
This paper is the second instalment in our study of the observed time delay in the arrival times of radio photons emanating from Gamma Ray Bursts (GRBs). The mundane assumption in contemporary physics as to the cause ...This paper is the second instalment in our study of the observed time delay in the arrival times of radio photons emanating from Gamma Ray Bursts (GRBs). The mundane assumption in contemporary physics as to the cause of these pondersome time delays is that they are a result of the photon being endowed with a non-zero mass. While we do not rule out the possibility of a non-zero mass for the photon, our working assumption is that the major cause of these time delays may very well be that these photons are travelling in a rarefied cosmic plasma in which the medium’s electrons interact with the electric component of the Photon, thus generating tiny currents that lead to dispersion, hence, a frequency-dependent speed of Light (FDSL). In the present instalment, we “improve” on the model presented in the first instalment by dropping the assumption that the resultant pairs of these radio photons leave the shock front simultaneously. The new assumption of a non-simultaneous— albeit systematic—emission of these photon pairs allows us to obtain a much more convincing and stronger correlation in the time delay. This new correlation allows us to build a unified model for the four GRBs in our sample using a relative distance correction mechanism. The new unified model allows us to obtain as our most significant result a value for the frequency equivalence of the interstellar medium (ISM)’s conductance ν* ~ 1.500 ± 0.009 Hzand also an independent distance measure to the GRBs where we obtain for our four GRB samples an average distance of: ~69.40 ± 0.10, 40.00 ± 0.00, 58.40 ± 0.40, and 86.00 ± 1.00 Mpc, for GRB 030329, 980425, 000418 and 021004 respectively.展开更多
We focus on in this paper the convergence rate of the L-N estimators for the fixed effect β in Poisson-Gamma models which are typical hierarchical generalised linear models(HGLMs). Under the proper assumptions on r...We focus on in this paper the convergence rate of the L-N estimators for the fixed effect β in Poisson-Gamma models which are typical hierarchical generalised linear models(HGLMs). Under the proper assumptions on response variables and some smoothing conditions, we obtain the strong consistency and the convergence rate of the L-N estimator based on the combination of L-N and quasi-likelihood.展开更多
Identifying the unknown geometric and material information of a multi-shield object by analyzing the radiation signature measurements is always an important problem in national and global security. In order to identif...Identifying the unknown geometric and material information of a multi-shield object by analyzing the radiation signature measurements is always an important problem in national and global security. In order to identify the unknown shielding layer thicknesses of a source/shield system with gamma-ray spectra, we have developed a derivative-free inverse radiation transport model based on a differential evolution algorithm with global and local neighbourhoods(IRT-DEGL). In the present paper, the IRT-DEGL model is further extended for estimating the unknown thicknesses with random initial guesses and material mass densities of multi-shielding layers as well as their combinations. Using the detected gamma-ray spectra,the illustration of inverse studies is implemented and the main influence factors for inverse results are also analyzed.展开更多
Very recently, we have applied the random walk model to fit the global temperature anomaly, CRUTEM3. With encouraging results, we apply the random walk model to fit the temperature walk that is the conversion of recor...Very recently, we have applied the random walk model to fit the global temperature anomaly, CRUTEM3. With encouraging results, we apply the random walk model to fit the temperature walk that is the conversion of recorded tem-perature and real recorded temperature in 46 gamma world cities from 1901 to 1998 in this study. The results show that the random walk model can fit both temperature walk and real recorded temperature although the fitted results from other climate models are unavailable for comparison in these 46 cities. Therefore, the random walk model can fit not only the global temperature anomaly, but also the real recorded temperatures in various cities around the world.展开更多
This study is aimed at identifying gamma irradiated response of bovine blood, liver and kidney tissues at radiofrequency. For this purpose, impedence meter (Booton 7200) working in conjunction with signal generators (...This study is aimed at identifying gamma irradiated response of bovine blood, liver and kidney tissues at radiofrequency. For this purpose, impedence meter (Booton 7200) working in conjunction with signal generators (Loadster, SG416013 and Harris G857993) and improvised parallel plate dielectric cells constructed in line with the method of Laogun et al., (2005) were used to obtain the dielectric spread parameter gamma radiation α, of blood, liver and kidney tissues exposed to gamma irradiation dose range of 1.0 - 85.0 Gy. The dielectric spread parameter α gives the extent of damage induced in an irradiated tissue. Results of this work revealed that at 0 - 50 MHz frequency range, Kidney tissues displayed higher sensitive, followed Liver tissues and lasted the bovine blood between 0 - 60 Gy but reversed for blood and liver at 85 Gy. At 0 - 100 kHz frequency range liver tissue is more venerable to radiation injuries between gamma irradiation dose range of 0 - 20 Gy while between 43 - 85 Gy the Kidney’s sensitivity is the highest followed by blood and liver tissues. This implies that the liver tissues are less liable to radiation injuries at radiofrequency. A comparison of the linear, exponential and polynomial models using Akaike Information Criteria (AIC) revealed that linear models were the most suitable models for describing the effect of gamma radiation on the dielectric dispersion properties of bovine tissues at low and high radiofrequencies. This implies that the response of the investigated tissues increases linearly with gamma irradiation dose.展开更多
Based on an analysis of 280 Type SNIa supernovae and gamma-ray bursts redshifts in the range of z = 0.0104 - 8.1 the Hubble diagram is shown to follow a strictly exponential slope predicting an exponentially expanding...Based on an analysis of 280 Type SNIa supernovae and gamma-ray bursts redshifts in the range of z = 0.0104 - 8.1 the Hubble diagram is shown to follow a strictly exponential slope predicting an exponentially expanding or static universe. At redshifts > 2 - 3 ΛCDM models show a poor agreement with the observed data. Based on the results presented in this paper, the Hubble diagram test does not necessarily support the idea of expansion according to the big-bang concordance model.展开更多
基金supported by the National High-Tech R&D Program of China (2011BAD32B00-04)the National Basic Research Program of China (2010CB951102)+1 种基金the National Natural Science Foundation of China (41071326)the National Scientific Research Special Project of Public Sectors (Agriculture) of China (200903041)
文摘Drought is one of the severe meteorological disasters and causes of serious losses for agricultural productions, and early assessment of drought hazard degree is critical in management of maize farming. This study proposes a novel method for assessment of maize drought hazard in different growth stages. First, the study divided the maize growth period into four critical growth stages, including seeding, elongation, tasseling, and filling. Second, maize drought causal factors were selected and the fuzzy membership function was established. Finally, the study built a fuzzy gamma model to assess maize drought hazards, and the gamma 0.93 was finally established using Monte Carlo Analysis. Performing fuzzy gamma operation with 0.93 for gamma and classifying the area yielded a map of maize drought hazards with four zones of light, moderate, severe, and extreme droughts. Using actual field collected data, seven selected samples for drought hazard degree were examined, the model output proved to be a valid tool in the assessment maize drought hazard. This model will be very useful in analyzing the spatial change of maize drought hazard and influence on yield, which is significant for drought management in major agricultural areas.
文摘This paper is the second instalment in our study of the observed time delay in the arrival times of radio photons emanating from Gamma Ray Bursts (GRBs). The mundane assumption in contemporary physics as to the cause of these pondersome time delays is that they are a result of the photon being endowed with a non-zero mass. While we do not rule out the possibility of a non-zero mass for the photon, our working assumption is that the major cause of these time delays may very well be that these photons are travelling in a rarefied cosmic plasma in which the medium’s electrons interact with the electric component of the Photon, thus generating tiny currents that lead to dispersion, hence, a frequency-dependent speed of Light (FDSL). In the present instalment, we “improve” on the model presented in the first instalment by dropping the assumption that the resultant pairs of these radio photons leave the shock front simultaneously. The new assumption of a non-simultaneous— albeit systematic—emission of these photon pairs allows us to obtain a much more convincing and stronger correlation in the time delay. This new correlation allows us to build a unified model for the four GRBs in our sample using a relative distance correction mechanism. The new unified model allows us to obtain as our most significant result a value for the frequency equivalence of the interstellar medium (ISM)’s conductance ν* ~ 1.500 ± 0.009 Hzand also an independent distance measure to the GRBs where we obtain for our four GRB samples an average distance of: ~69.40 ± 0.10, 40.00 ± 0.00, 58.40 ± 0.40, and 86.00 ± 1.00 Mpc, for GRB 030329, 980425, 000418 and 021004 respectively.
基金Supported by the National Natural Science Foundation of China(10371005)Scientific Research Funds of the Excellent Young Teachers Program of the Ministry of Education China(VE00074)
文摘We focus on in this paper the convergence rate of the L-N estimators for the fixed effect β in Poisson-Gamma models which are typical hierarchical generalised linear models(HGLMs). Under the proper assumptions on response variables and some smoothing conditions, we obtain the strong consistency and the convergence rate of the L-N estimator based on the combination of L-N and quasi-likelihood.
基金supported by the National Natural Science Foundation of China(Nos.11605163 and 21504085)the China Academy of Engineering Physics Foundation for Development of Science and Technology(No.201580103014 and No.2015B0301063)+1 种基金the Foundation for Special Talents in China Academy of Engineering Physics(No.TP201502-3)the Sichuan Science and Technology Development Foundation for Young Scientists(No.2017Q0050)
文摘Identifying the unknown geometric and material information of a multi-shield object by analyzing the radiation signature measurements is always an important problem in national and global security. In order to identify the unknown shielding layer thicknesses of a source/shield system with gamma-ray spectra, we have developed a derivative-free inverse radiation transport model based on a differential evolution algorithm with global and local neighbourhoods(IRT-DEGL). In the present paper, the IRT-DEGL model is further extended for estimating the unknown thicknesses with random initial guesses and material mass densities of multi-shielding layers as well as their combinations. Using the detected gamma-ray spectra,the illustration of inverse studies is implemented and the main influence factors for inverse results are also analyzed.
文摘Very recently, we have applied the random walk model to fit the global temperature anomaly, CRUTEM3. With encouraging results, we apply the random walk model to fit the temperature walk that is the conversion of recorded tem-perature and real recorded temperature in 46 gamma world cities from 1901 to 1998 in this study. The results show that the random walk model can fit both temperature walk and real recorded temperature although the fitted results from other climate models are unavailable for comparison in these 46 cities. Therefore, the random walk model can fit not only the global temperature anomaly, but also the real recorded temperatures in various cities around the world.
文摘This study is aimed at identifying gamma irradiated response of bovine blood, liver and kidney tissues at radiofrequency. For this purpose, impedence meter (Booton 7200) working in conjunction with signal generators (Loadster, SG416013 and Harris G857993) and improvised parallel plate dielectric cells constructed in line with the method of Laogun et al., (2005) were used to obtain the dielectric spread parameter gamma radiation α, of blood, liver and kidney tissues exposed to gamma irradiation dose range of 1.0 - 85.0 Gy. The dielectric spread parameter α gives the extent of damage induced in an irradiated tissue. Results of this work revealed that at 0 - 50 MHz frequency range, Kidney tissues displayed higher sensitive, followed Liver tissues and lasted the bovine blood between 0 - 60 Gy but reversed for blood and liver at 85 Gy. At 0 - 100 kHz frequency range liver tissue is more venerable to radiation injuries between gamma irradiation dose range of 0 - 20 Gy while between 43 - 85 Gy the Kidney’s sensitivity is the highest followed by blood and liver tissues. This implies that the liver tissues are less liable to radiation injuries at radiofrequency. A comparison of the linear, exponential and polynomial models using Akaike Information Criteria (AIC) revealed that linear models were the most suitable models for describing the effect of gamma radiation on the dielectric dispersion properties of bovine tissues at low and high radiofrequencies. This implies that the response of the investigated tissues increases linearly with gamma irradiation dose.
文摘Based on an analysis of 280 Type SNIa supernovae and gamma-ray bursts redshifts in the range of z = 0.0104 - 8.1 the Hubble diagram is shown to follow a strictly exponential slope predicting an exponentially expanding or static universe. At redshifts > 2 - 3 ΛCDM models show a poor agreement with the observed data. Based on the results presented in this paper, the Hubble diagram test does not necessarily support the idea of expansion according to the big-bang concordance model.