Germinated brown rice(GBR)is rich in gamma oryzanol which increase its consumption popularity,particularly in the health food market.The objective of this research was to apply the near infraredspectroscopy(NIRS)for e...Germinated brown rice(GBR)is rich in gamma oryzanol which increase its consumption popularity,particularly in the health food market.The objective of this research was to apply the near infraredspectroscopy(NIRS)for evaluation of gamma oryzanol of the germinated brown rice.The germinated brown rice samples were prepared from germinated rough rice(soaked for 24 and 48 h,incubated for 0,6,12,18,24,30 and 36 h)and purchased from local supermar kets.The germinated brown rice sampleswere subjected to NIR scanning before the evaluation of gamma oryzanol by using partial extractionmet hodology.The prediction model was established by partial least square regression(PLSR)andvalidated by full cross validation method.The NIRS model established from various varieties of germinated brown rice bought from diferent markets by first derivatives+vector normalizationpretreated spectra showed the optimal prediction with the correlation of determination(R?),root mean squared error of cross validation(RMSECV),and bias of 0.934,8.84×10^(-5) mg/100 g drymatter and 1.06×10^(-5) mg/100 g dry matter,respectively.This is the first report on the application of NIRS in the evaluation of gamma oryzanol of the germinated brown rice.This information is veryuseful to the germinated brown rice production factory and consumers.展开更多
文摘Germinated brown rice(GBR)is rich in gamma oryzanol which increase its consumption popularity,particularly in the health food market.The objective of this research was to apply the near infraredspectroscopy(NIRS)for evaluation of gamma oryzanol of the germinated brown rice.The germinated brown rice samples were prepared from germinated rough rice(soaked for 24 and 48 h,incubated for 0,6,12,18,24,30 and 36 h)and purchased from local supermar kets.The germinated brown rice sampleswere subjected to NIR scanning before the evaluation of gamma oryzanol by using partial extractionmet hodology.The prediction model was established by partial least square regression(PLSR)andvalidated by full cross validation method.The NIRS model established from various varieties of germinated brown rice bought from diferent markets by first derivatives+vector normalizationpretreated spectra showed the optimal prediction with the correlation of determination(R?),root mean squared error of cross validation(RMSECV),and bias of 0.934,8.84×10^(-5) mg/100 g drymatter and 1.06×10^(-5) mg/100 g dry matter,respectively.This is the first report on the application of NIRS in the evaluation of gamma oryzanol of the germinated brown rice.This information is veryuseful to the germinated brown rice production factory and consumers.