期刊文献+
共找到3,139篇文章
< 1 2 157 >
每页显示 20 50 100
Structure Improvement and Optimization of Gantry Milling System for Complex Boring and Milling Machining Center
1
作者 Zhongxin Zang Qilin Shu 《Journal of Electronic Research and Application》 2023年第5期1-7,共7页
To enhance the efficiency and machining precision of the TX1600G complex boring and milling machining center,a study was conducted on the structure of its gantry milling system.This study aimed to mitigate the influen... To enhance the efficiency and machining precision of the TX1600G complex boring and milling machining center,a study was conducted on the structure of its gantry milling system.This study aimed to mitigate the influence of factors such as structural quality,natural frequency,and stiffness.The approach employed for this investigation involved mechanism topology optimization.To initiate this process,a finite element model of the gantry milling system structure was established.Subsequently,an objective function,comprising strain energy and modal eigenvalues,was synthesized.This objective function was optimized through multi-objective topology optimization,taking into account certain mass fraction constraints and considering various factors,including processing technology.The ultimate goal of this optimization was to create a gantry milling structure that exhibited high levels of dynamic and static stiffness,a superior natural frequency,and reduced mass.To validate the effectiveness of these topology optimization results,a comparison was made between the new and previous structures.The findings of this study serve as a valuable reference for optimizing the structure of other components within the machining center. 展开更多
关键词 machining center gantry milling system structure Natural frequency STIFFNESS Multi-objective topology optimization
下载PDF
EQUIVALENT NORMAL CURVATURE APPROACH MILLING MODEL OF MACHINING FREEFORM SURFACES 被引量:5
2
作者 YI Xianzhong MA Weiguo +2 位作者 QIHaiying YAN Zesheng GAO Deli 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第3期52-57,共6页
A new milling methodology with the equivalent normal curvature milling model machining freeform surfaces is proposed based on the normal curvature theorems on differential geometry. Moreover, a specialized whirlwind m... A new milling methodology with the equivalent normal curvature milling model machining freeform surfaces is proposed based on the normal curvature theorems on differential geometry. Moreover, a specialized whirlwind milling tool and a 5-axis CNC horizontal milling machine are introduced. This new milling model can efficiently enlarge the material removal volume at the tip of the whirlwind milling tool and improve the producing capacity. The machining strategy of this model is to regulate the orientation of the whirlwind milling tool relatively to the principal directions of the workpiece surface at the point of contact, so as to create a full match with collision avoidance between the workpiece surface and the symmetric rotational surface of the milling tool. The practical results show that this new milling model is an effective method in machining complex three- dimensional surfaces. This model has a good improvement on finishing machining time and scallop height in machining the freeform surfaces over other milling processes. Some actual examples for manufacturing the freeform surfaces with this new model are given. 展开更多
关键词 Equivalent normal curvature milling model Whirlwind milling method Freeform surfaces 5-axis CNC machine Differential geometry
下载PDF
Theoretical modeling of cutting temperature in high-speed end milling process for die/mold machining 被引量:4
3
作者 YingTang 《Journal of University of Science and Technology Beijing》 CSCD 2005年第1期90-95,共6页
A parametric model of cutting temperature generated in end milling process is developed according to the thermal mechanism of end milling as an intermittent operation, which periodically repeats the cycle of heating u... A parametric model of cutting temperature generated in end milling process is developed according to the thermal mechanism of end milling as an intermittent operation, which periodically repeats the cycle of heating under cutting and cooling under non-cutting. It shows that cutting speed and the tool-workpiece engagement condition are determinative for tool temperature in the operation. The suggested model was investigated by tests of AlTiN coated endmill machining hardened die steel JIS SKD61, where cutting temperature on the flank face of tool was measured with an optical fiber type radiation thermometer. Experimental results show that the tendency of cutting temperature to increase with cutting speed and engagement angle is intensified with the progressing tool wear. 展开更多
关键词 end milling cutting temperature intermittent cutting die/mold machining
下载PDF
Theoretical and Experimental Investigation of Laser Milling Assisted with Jet Electrochemical Machining 被引量:1
4
作者 赵建社 张华 +1 位作者 袁立新 徐家文 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期492-497,共6页
In laser milling assisted with jet electrochemical machining(LMAJECM),the source of energy is a pulsed laser beam aligned coaxially with a jet of electrolyte,which focuses optical energy on the surface of workpiece.Th... In laser milling assisted with jet electrochemical machining(LMAJECM),the source of energy is a pulsed laser beam aligned coaxially with a jet of electrolyte,which focuses optical energy on the surface of workpiece.The impact of jet of electrolyte develops a state-of-art work to perform operations such as electrolytic etching,effective cooling,and transportation of debris.Therefore,a special jet cell is designed to obtain stable jet as to be a kind of noncontact tool,i.e.,electrode.According to the theoretical model of on-off pulse time process,laser machining and electrolytic anodization are simulated by finite element analysis(FEA)method.Grooves on a 0.5mm thick 321 stainless steel sheet produced by LMAJECM is performed with pulsed Nd:YAG laser at the second harmonic wavelength.Compared with laser milling under ambient atmosphere conditions,the recast layer and burrs are effectively diminished.And the accuracy of depth is dedicated to laser milling,whilst that of width is dominated by jet electrochemical machining.It is demonstrated that LMAJECM can be a highly potential approach for fabricating 3-D micro components. 展开更多
关键词 MICROmachining laser milling jet electrochemical machining recast layer
下载PDF
Machining Parameters Optimization of Multi-Pass Face Milling Using a Chaotic Imperialist Competitive Algorithm with an Efficient Constraint-Handling Mechanism
5
作者 Yang Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第9期365-389,共25页
The selection of machining parameters directly affects the production time,quality,cost,and other process performance measures for multi-pass milling.Optimization of machining parameters is of great significance.Howev... The selection of machining parameters directly affects the production time,quality,cost,and other process performance measures for multi-pass milling.Optimization of machining parameters is of great significance.However,it is a nonlinear constrained optimization problem,which is very difficult to obtain satisfactory solutions by traditional optimization methods.A new optimization technique combined chaotic operator and imperialist competitive algorithm(ICA)is proposed to solve this problem.The ICA simulates the competition between the empires.It is a population-based meta-heuristic algorithm for unconstrained optimization problems.Imperialist development operator based on chaotic sequence is introduced to improve the local search of ICA,while constraints handling mechanism is introduced and an imperialist-colony transformation policy is established.The improved ICA is called chaotic imperialist competitive algorithm(CICA).A case study of optimizing machining parameters for multi-pass face milling operations is presented to verify the effectiveness of the proposed method.The case is to optimize parameters such as speed,feed,and depth of cut in each pass have yielded a minimum total product ion cost.The depth of cut of optimal strategy obtained by CICA are 4 mm,3 mm,1 mm for rough cutting pass 1,rough cutting pass 1 and finish cutting pass,respectively.The cost for each pass are$0.5366 US,$0.4473 US and$0.3738 US.The optimal solution of CICA for various strategies with at=8 mm is$1.3576 US.The results obtained with the proposed schemes are better than those of previous work.This shows the superior performance of CICA in solving such problems.Finally,optimization of cutting strategy when the width of workpiece no smaller than the diameter of cutter is discussed.Conclusion can be drawn that larger tool diameter and row spacing should be chosen to increase cutting efficiency. 展开更多
关键词 CHAOTIC imperialist COMPETITIVE algorithm constraint-handling MECHANISM MULTI-PASS face milling machining parameters OPTIMIZATION cutting strategy
下载PDF
Heat regulating strategy in numerical control end milling for hard metal machining
6
作者 YingTang YoshiakiKakino 《Journal of University of Science and Technology Beijing》 CSCD 2005年第2期187-191,共5页
The trend in die/mold manufacturing at present is towards the hard machining at high speed to replace the electron dis- charge machining. Failure forms of the AlTiN-coated micro-grain carbide endmill when used for th... The trend in die/mold manufacturing at present is towards the hard machining at high speed to replace the electron dis- charge machining. Failure forms of the AlTiN-coated micro-grain carbide endmill when used for the machining of JIS SKD61 (HRC 53), a widely used material in die/mold manufacturing, are investigated. The endmill shows a characteristic that tool life decreases greatly due to the chipping when overload occurs or the rapid increase of wear when over-heat accumulation in cutting edges. As a consequence of the investigation, a strategy to regulate heat generation in the end milling process is proposed. This is accomplished by controlling the cutting arc length, i.e. the length of each flute engaging workpiece in a cutting cycle. Case studies on the slot end milling and comer rounding are conducted. The results show that the proposed strategy suggests the optimal tool path as well as the optimal pitch between successive tool paths under the cutting time criterion. 展开更多
关键词 heat generation: end milling hard metal machining numerical control
下载PDF
Analysis and correction of the machining errors of small plastic helical gears by ball-end milling
7
作者 Gao Sande Huang Loulin and Han Baoling 《Computer Aided Drafting,Design and Manufacturing》 2012年第1期61-65,共5页
Many small-size precise plastic helical involutes gears are used in electrical appliances to transmit rotary movements con- tinuously and smoothly. Ball-end milling is an effective method for trial manufacture or smal... Many small-size precise plastic helical involutes gears are used in electrical appliances to transmit rotary movements con- tinuously and smoothly. Ball-end milling is an effective method for trial manufacture or small batch production of this type of gear, but the precision of the gear is usually low. In this research, the main sources of the errors of the gear, machining errors of the tooth profile and trace of the gear obtained were analyzed. The correction amounts for these errors are then determined by using a CNC gear tester. They are used to generate a new 3D-CAD model for gear machining with better nrecision. 展开更多
关键词 small plastic helical gear CAD/CAM ball-end milling machining error CNC gear tester error correction
下载PDF
MATHEMATICAL MODEL OF NC MACHINING NONCONVENTIONAL MILLING CUTTERS-FORMING METHOD OF RAKE FACES
8
作者 Shen Qian ,Wang Min Nanjing University of Aeronautics and Astronautics 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1997年第2期156-160,共3页
How to generate rake faces of nonconventional milling cutters (NCMC) with constant spiral angled and normal rake angled edges on NC machine tools is presented by use of a blunt cup grinder or a cup milling cutter. Mot... How to generate rake faces of nonconventional milling cutters (NCMC) with constant spiral angled and normal rake angled edges on NC machine tools is presented by use of a blunt cup grinder or a cup milling cutter. Motion functions of the NC machining system are mathematically deduced and exam- ed by a experiment. The research will provide theoretical and practical guidance for machining noncon- ventional tools on NC machine tools. 展开更多
关键词 Nonconventional milling cutters Spiral angle Normal angle Rake face NC machining
全文增补中
Experimental Study on Titanium Alloy Cutting Property and Wear Mechanism with Circular-arc Milling Cutters 被引量:2
9
作者 Tao Chen Jiaqiang Liu +3 位作者 Gang Liu Hui Xiao Chunhui Li Xianli Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第3期219-229,共11页
Titanium alloy has been applied in the field of aerospace manufacturing for its high specific strength and hardness.Nonetheless,these properties also cause general problems in the machining,such as processing ineffici... Titanium alloy has been applied in the field of aerospace manufacturing for its high specific strength and hardness.Nonetheless,these properties also cause general problems in the machining,such as processing inefficiency,serious wear,poor workpiece face quality,etc.Aiming at the above problems,this paper carried out a comparative experimental study on titanium alloy milling based on the CAMCand BEMC.The variation law of cutting force and wear morphology of the two tools were obtained,and the wear mechanism and the effect of wear on machining quality were analyzed.The conclusion is that in contrast with BEMC,under the action of cutting thickness thinning mechanism,the force of CAMC was less,and its fluctuation was more stable.The flank wear was uniform and near the cutting edge,and the wear rate was slower.In the early period,the wear mechanism of CAMC was mainly adhesion.Gradually,oxidative wear also occurred with milling.Furthermore,the surface residual height of CAMC was lower.There is no obvious peak and trough accompanied by fewer surface defects. 展开更多
关键词 Circular-arc milling cutter Titanium alloy Ball-end milling cutter Surface quality milling force Tool wear machining quality
下载PDF
A New Dynamics Analysis Model for Five-Axis Machining of Curved Surface Based on Dimension Reduction and Mapping
10
作者 Minglong Guo Zhaocheng Wei +2 位作者 Minjie Wang Zhiwei Zhao Shengxian Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期172-184,共13页
The equipment used in various fields contains an increasing number of parts with curved surfaces of increasing size.Five-axis computer numerical control(CNC)milling is the main parts machining method,while dynamics an... The equipment used in various fields contains an increasing number of parts with curved surfaces of increasing size.Five-axis computer numerical control(CNC)milling is the main parts machining method,while dynamics analysis has always been a research hotspot.The cutting conditions determined by the cutter axis,tool path,and workpiece geometry are complex and changeable,which has made dynamics research a major challenge.For this reason,this paper introduces the innovative idea of applying dimension reduction and mapping to the five-axis machining of curved surfaces,and proposes an efficient dynamics analysis model.To simplify the research object,the cutter position points along the tool path were discretized into inclined plane five-axis machining.The cutter dip angle and feed deflection angle were used to define the spatial position relationship in five-axis machining.These were then taken as the new base variables to construct an abstract two-dimensional space and establish the mapping relationship between the cutter position point and space point sets to further simplify the dimensions of the research object.Based on the in-cut cutting edge solved by the space limitation method,the dynamics of the inclined plane five-axis machining unit were studied,and the results were uniformly stored in the abstract space to produce a database.Finally,the prediction of the milling force and vibration state along the tool path became a data extraction process that significantly improved efficiency.Two experiments were also conducted which proved the accuracy and efficiency of the proposed dynamics analysis model.This study has great potential for the online synchronization of intelligent machining of large surfaces. 展开更多
关键词 Curved surface Five-axis machining Dimension reduction and mapping milling force DYNAMICS
下载PDF
Use of Discrete Wavelet Features and Support Vector Machine for Fault Diagnosis of Face Milling Tool 被引量:4
11
作者 C.K.Madhusudana N.Gangadhar +1 位作者 Hemantha Kumar S.Narendranath 《Structural Durability & Health Monitoring》 EI 2018年第2期111-127,共17页
This paper presents the fault diagnosis of face milling tool based on machine learning approach.While machining,spindle vibration signals in feed direction under healthy and faulty conditions of the milling tool are a... This paper presents the fault diagnosis of face milling tool based on machine learning approach.While machining,spindle vibration signals in feed direction under healthy and faulty conditions of the milling tool are acquired.A set of discrete wavelet features is extracted from the vibration signals using discrete wavelet transform(DWT)technique.The decision tree technique is used to select significant features out of all extracted wavelet features.C-support vector classification(C-SVC)andν-support vector classification(ν-SVC)models with different kernel functions of support vector machine(SVM)are used to study and classify the tool condition based on selected features.From the results obtained,C-SVC is the best model thanν-SVC and it can be able to give 94.5%classification accuracy for face milling of special steel alloy 42CrMo4. 展开更多
关键词 Fault diagnosis face milling decision tree discrete wavelet transform support vector machine
下载PDF
DYNAMICS ANALYSIS OF SPECIAL STRUCTURE OF MILLING-HEAD MACHINE TOOL 被引量:8
12
作者 YANG Qingdong LIU Guoqing WANG Keshe 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第6期103-107,共5页
The milling-head machine tool is a sophisticated and high-quality machine tool of which the spindle system is made up of special multi-element structure. Two special mechanical configurations make the cutting performa... The milling-head machine tool is a sophisticated and high-quality machine tool of which the spindle system is made up of special multi-element structure. Two special mechanical configurations make the cutting performance of the machine tool decline. One is the milling head spindle supported on two sets of complex bearings. The mechanical dynamic rigidity of milling head structure is researched on designed digital prototype with finite element analysis(FEA) and modal synthesis analysis ( MSA ) for identifying the weak structures. The other is the ram structure hanging on milling head. The structure is researched to get dynamic performance on cutting at different ram extending positions. The analysis results on spindle and ram are used to improve the mechanical configurations and structure in design. The machine tool is built up with modified structure and gets better dynamic rigidity than it was before. 展开更多
关键词 milling-head machine tool Dynamic characteristics Finite element analysis Modal synthesis analysis
下载PDF
Electrical discharge and arc milling with automatic tracking of optimal flushing direction:A novel high-efficiency compound machining method
13
作者 Xinlei WU Yonghong LIU +4 位作者 Pengxin ZHANG Liang QI Dege LI Chi MA Renjie JI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第3期351-364,共14页
The arc milling method has the advantages of high machining efficiency and low cost and is independent of the strength and hardness of machined materials.However,frequent electrode back-offs and the risk of workpiece ... The arc milling method has the advantages of high machining efficiency and low cost and is independent of the strength and hardness of machined materials.However,frequent electrode back-offs and the risk of workpiece burning may occur if erosion products are not removed promptly.In this study,it was found that the flushing method of the working medium had a significant impact on the machining performance of arc milling.Based on this,a novel highefficiency compound machining method of electrical discharge and arc milling with automatic tracking of the optimal flushing direction was proposed.An automatic tracking optimizer for external working medium injection was designed to determine the optimal external flushing direction according to the feed direction.The influence of flushing methods,working mediums,and machining parameters on the machining efficiency,tool electrode wear rate,machining error,and surface integrity of titanium alloys were investigated.The results indicated that better machining performance and environmental friendliness were achieved using the compound flushing method of outer compressed air and inner deionized water.Additionally,the automatic tracking flushing method in the opposite direction of the feed direction showed superior results compared to other directions.The material removal rate with the opposite direction injection could be increased up to 1.62 times that of the same direction,and the relative electrode wear rate could be reduced by 14.76%.This novel method has broad application prospects for machining parts with difficult-to-cut materials in aerospace and military industries. 展开更多
关键词 Arc milling DIELECTRIC Difficult-to-cut materials Electric discharge machining EROSION Material removal rate
原文传递
Milling Machinability of TiC Particle and TiB Whisker Hybrid Reinforced Titanium Matrix Composites 被引量:1
14
作者 Huan Haixiang Xu Jiuhua +2 位作者 Su Honghua Ge Yingfei Liang Xinghui 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第4期363-371,共9页
The milling machinabilities of titanium matrix composites were comprehensively evaluated to provide a theoretical basis for cutting parameter determination.Polycrystalline diamond(PCD)tools with different grain sizes ... The milling machinabilities of titanium matrix composites were comprehensively evaluated to provide a theoretical basis for cutting parameter determination.Polycrystalline diamond(PCD)tools with different grain sizes and geometries,and carbide tools with and without coatings were used in the experiments.Milling forces,milling temperatures,tool lifetimes,tool wear,and machined surface integrities were investigated.The PCD tool required a primary cutting force 15%smaller than that of the carbide tool,while the uncoated carbide tool required a primary cutting force 10% higher than that of the TiAlN-coated tool.A cutting force of 300 Nper millimeter of the cutting edge(300N/mm)was measured.This caused excessive tool chipping.The cutting temperature of the PCD tool was 20%—30%lower than that of the carbide tool,while that of the TiAlN-coated tool was 12%lower than that of the uncoated carbide tool.The cutting temperatures produced when using water-based cooling and minimal quantity lubrication(MQL)were reduced by 100°C and 200°C,compared with those recorded with dry cutting,respectively.In general,the PCD tool lifetimes were 2—3 times longer than the carbide tool lifetimes.The roughness Raof the machined surface was less than 0.6μm,and the depth of the machined surface hardened layer was in the range of 0.15—0.25 mm for all of the PCD tools before a flank wear land of 0.2mm was reached.The PCD tool with a 0.8mm tool nose radius,0°rake angle,10°flank angle,and grain size of(30+2)μm exhibited the best cutting performance.For this specific tool,a lifetime of 16 min can be expected. 展开更多
关键词 钛基复合材料 铣削加工 TiB晶须 涂层硬质合金刀具 混杂增强 加工表面完整性 TiC PCD工具
下载PDF
TK 5440 CNC VERTICAL BORING AND MILLING MACHINE
15
《China's Foreign Trade》 1996年第11期62-62,共1页
This machine tool produced by theQinchuan Machine Tool Worksincorporates all the commonmachining functions, and is equipped withan advanced CNC system. It can continuouslyfinish multiple working procedures such asdril... This machine tool produced by theQinchuan Machine Tool Worksincorporates all the commonmachining functions, and is equipped withan advanced CNC system. It can continuouslyfinish multiple working procedures such asdrilling, milling, boring, reaming and tappingwithin one clamping. Not only is it universaland efficient, but also it can machinecomplicated parts which cannot be machinedon general universal machines, such as variouskinds of precision molds, plates, disks, 展开更多
关键词 CNC TK 5440 CNC VERTICAL BORING AND milling machinE
下载PDF
基于PowerMILL Vortex旋风铣与MachineDNA系统应用研究
16
作者 范绍平 《制造技术与机床》 北大核心 2016年第4期87-89,共3页
旋风铣Vortex是Delcam最新的高速区域清除加工策略,可用于2轴、3轴、定位五轴以及残留加工。和传统高速加工方法相比,可节省多达60%的加工时间。Machine DNA是Delcam的一项最新专利技术,它可捕捉单个机床的运行特点和数据,并使用捕捉的... 旋风铣Vortex是Delcam最新的高速区域清除加工策略,可用于2轴、3轴、定位五轴以及残留加工。和传统高速加工方法相比,可节省多达60%的加工时间。Machine DNA是Delcam的一项最新专利技术,它可捕捉单个机床的运行特点和数据,并使用捕捉的数据来完善Power MILL产生的刀具路径[1]。旋风铣Vortex与Machine DNA的结合使粗加工效率提升的同时,最大限度地发挥机床潜能,从而可在合理安全的切削条件下实现加工效率最大化。 展开更多
关键词 高速加工 Vortex旋风铣 machineDNA加工效率 等体积切削
下载PDF
Modeling and Analytical Solution of Chatter Stability for T-slot Milling 被引量:8
17
作者 LI Zhongqun LIU Qiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第1期88-93,共6页
T-slot milling is one of the most common milling processes in industry. Despite recent advances in machining technology, productivity of T-slot milling is usually limited due to the process limitations such as high cu... T-slot milling is one of the most common milling processes in industry. Despite recent advances in machining technology, productivity of T-slot milling is usually limited due to the process limitations such as high cutting forces and stability. If cutting conditions are not selected properly the process may result in the poor surface finish of the workpiece and the potential damage to the machine tool. Currently, the predication of chatter stability and determination of optimal cutting conditions based on the modeling of T-slot milling process is an effective way to improve the material removal rate(MRR) of a T-slot milling operation. Based on the geometrical model of the T-slot cutter, the dynamic cutting force model was presented in which the average directional cutting force coefficients were obtained by means of numerical approach, and leads to an analytical determination of stability lobes diagram(SLD) on the axial depth of cut. A new kind of SLD on the radial depth of cut was also created to satisfy the special requirement of T-slot milling. Thereafter, a dynamic simulation model of T-slot milling was implemented using Matlab software. In order to verify the effectiveness of the approach, the transfer functions of a typical cutting system in a vertical CNC machining center were measured in both feed and normal directions by an instrumented hammer and accelerators. Dynamic simulations were conducted to obtain the predicated SLD under specified cutting conditions with both the proposed model and CutPro~. Meanwhile, a set of cutting trials were conducted to reveal whether the cutting process under specified cutting conditions is stable or not. Both the simulation comparison and experimental verification demonstrated that the satisfactory coincidence between the simulated, the predicted and the experimental results. The chatter-free T-slot milling with higher MRR can be achieved under the cutting conditions determined according to the SLD simulation. 展开更多
关键词 machining dynamics T-slot milling chatter vibration stability lobes diagram
下载PDF
Micro Model of Carbon Fiber/Cyanate Ester Composites and Analysis of Machining Damage Mechanism 被引量:3
18
作者 Haitao Liu Jie Lin +1 位作者 Yazhou Sun Jinyang Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第3期198-208,共11页
Machining damage occurs on the surface of carbon fiber reinforced polymer (CFRP) composites during processing. In the current simulation model of CFRP, the initial defects on the carbon fiber and the periodic random d... Machining damage occurs on the surface of carbon fiber reinforced polymer (CFRP) composites during processing. In the current simulation model of CFRP, the initial defects on the carbon fiber and the periodic random distribution of the reinforcement phase in the matrix are not considered in detail, which makes the characteristics of the cutting model significantly different from the actual processing conditions. In this paper, a novel three-phase model of carbon fiber/cyanate ester composites is proposed to simulate the machining damage of the composites. The periodic random distribution of the carbon fiber reinforced phase in the matrix was realized using a double perturbation algorithm. To achieve the stochastic distribution of the strength of a single carbon fiber, a novel method that combines the Weibull intensity distribution theory with the Monte Carlo method is presented. The mechanical properties of the cyanate matrix were characterized by fitting the stress-strain curves, and the cohesive zone model was employed to simulate the interface. Based on the model, the machining damage mechanism of the composites was revealed using finite element simulations and by conducting a theoretical analysis. Furthermore, the milling surfaces of the composites were observed using a scanning electron microscope, to verify the accuracy of the simulation results. In this study, the simulations and theoretical analysis of the carbon fiber/cyanate ester composite processing were carried out based on a novel three-phase model, which revealed the material failure and machining damage mechanism more accurately. 展开更多
关键词 Carbon fiber reinforced polymer COMPOSITES MICRO simulation model machining damage mechanism milling and observation experiment Theoretical ANALYSIS
下载PDF
New Mathematical Method for the Determination of Cutter Runout Parameters in Flat-end Milling 被引量:2
19
作者 GUO Qiang SUN Yuwen +1 位作者 GUO Dongming ZHANG Chuantai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第5期947-952,共6页
The cutting force prediction is essential to optimize the process parameters of machining such as feed rate optimization, etc. Due to the significant influences of the runout effect on cutting force variation in milli... The cutting force prediction is essential to optimize the process parameters of machining such as feed rate optimization, etc. Due to the significant influences of the runout effect on cutting force variation in milling process, it is necessary to incorporate the cutter runout parameters into the prediction model of cutting forces. However, the determination of cutter runout parameters is still a challenge task until now. In this paper, cutting process geometry models, such as uncut chip thickness and pitch angle, are established based on the true trajectory of the cutting edge considering the cutter runout effect. A new algorithm is then presented to compute the cutter runout parameters for flat-end mill utilizing the sampled data of cutting forces and derived process geometry parameters. Further, three-axis and five-axis milling experiments were conducted on a machining centre, and resulting cutting forces were sampled by a three-component dynamometer. After computing the corresponding cutter runout parameters, cutter forces are simulated embracing the cutter runout parameters obtained from the proposed algorithm. The predicted cutting forces show good agreements with the sampled data both in magnitude and shape, which validates the feasibility and effectivity of the proposed new algorithm of determining cutter runout parameters and the new way to accurately predict cutting forces. The proposed method for computing the cutter runout parameters provides the significant references for the cutting force prediction in the cutting process. 展开更多
关键词 flat end milling cutter runout cutting force five-axis machining
下载PDF
Simulation Analysis of Surface Roughness for Milling Process 被引量:1
20
作者 Bai Liu Jixuan Yuan Zhenjiu Zhang 《Natural Science》 2019年第5期127-135,共9页
Surface roughness is one of the most important evaluation indexes in machine cutting. In order to analyze how the tool path affects the roughness of the surface after milling, series of simulations are implemented in ... Surface roughness is one of the most important evaluation indexes in machine cutting. In order to analyze how the tool path affects the roughness of the surface after milling, series of simulations are implemented in MasterCAM. We set up the same processing conditions with same parameters such as speed, material and feed rate etc. in these simulations, but different processing paths are used. We choose three paths: the parallel milling along the X-Y axis direction, the parallel milling along the Z-X or Z-Y axis direction and the streamline processing in the simulations. At the same time, end miller, arc miller and ball miller are respectively selected in the software. So there are totally 9 simulations of the milling process that are performed. Then the experimental cutting processes are performed correspondingly and the surface roughness and the accuracy are measured. The results show that the milling effect of the arc is better and the waste is minimal in the parallel milling along the Z-X or Z-Y axis direction with the end mills. 展开更多
关键词 Surface ROUGHNESS Tool PATH machining ACCURACY milling Simulation
下载PDF
上一页 1 2 157 下一页 到第
使用帮助 返回顶部