A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigate...A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigated by the generalized differential quadrature rule (GDQR) method. The GDQR method is also used to calculate the forced vibration response of the beam and voltage of each piezoelectric layer when the beam is subject to a sinusoidal base excitation. Results obtained from the analytical method are compared with those obtained from the finite element simulation with ANSYS, and good agreement is found. The voltage output of this periodic beam over its first band gap is calculated and compared with the voltage output of the uniform piezoelectric beam. It is concluded that this periodic beam has three advantages over the uniform piezoelectric beam, i.e., generating more voltage outputs over a wide frequency range, absorbing vibration, and being less weight.展开更多
荷电细水雾可以有效地提高抑制瓦斯爆炸的效率。其中,雾滴的荷质比是细水雾抑爆效率的重要影响因素。利用网状目标法测试系统,通过改变荷电电压、电极间距、喷雾压力、环形电极的横截面积和材质,研究各种因素对水雾荷质比的影响规律。...荷电细水雾可以有效地提高抑制瓦斯爆炸的效率。其中,雾滴的荷质比是细水雾抑爆效率的重要影响因素。利用网状目标法测试系统,通过改变荷电电压、电极间距、喷雾压力、环形电极的横截面积和材质,研究各种因素对水雾荷质比的影响规律。结果表明:水雾荷质比随荷电电压的升高呈现线性增长关系,随电极间距或环形电极横截面积的增大而增大;喷雾压力增大,荷质比呈现增长趋势,但增长幅度不明显;水雾荷质比不受电极环材质影响。在实验条件下,当荷电电压为7 k V、电极间距为12 mm、电极横截面积为4 mm2,喷雾压力为1.4 MPa时,雾滴荷电效果最好,荷质比为0.539 7 m C/kg。展开更多
文摘A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigated by the generalized differential quadrature rule (GDQR) method. The GDQR method is also used to calculate the forced vibration response of the beam and voltage of each piezoelectric layer when the beam is subject to a sinusoidal base excitation. Results obtained from the analytical method are compared with those obtained from the finite element simulation with ANSYS, and good agreement is found. The voltage output of this periodic beam over its first band gap is calculated and compared with the voltage output of the uniform piezoelectric beam. It is concluded that this periodic beam has three advantages over the uniform piezoelectric beam, i.e., generating more voltage outputs over a wide frequency range, absorbing vibration, and being less weight.
文摘荷电细水雾可以有效地提高抑制瓦斯爆炸的效率。其中,雾滴的荷质比是细水雾抑爆效率的重要影响因素。利用网状目标法测试系统,通过改变荷电电压、电极间距、喷雾压力、环形电极的横截面积和材质,研究各种因素对水雾荷质比的影响规律。结果表明:水雾荷质比随荷电电压的升高呈现线性增长关系,随电极间距或环形电极横截面积的增大而增大;喷雾压力增大,荷质比呈现增长趋势,但增长幅度不明显;水雾荷质比不受电极环材质影响。在实验条件下,当荷电电压为7 k V、电极间距为12 mm、电极横截面积为4 mm2,喷雾压力为1.4 MPa时,雾滴荷电效果最好,荷质比为0.539 7 m C/kg。