As the principal ore mineral in various tungsten(-gold)deposits,scheelite(CaWO_(4))plays an important role in directly dating the timing of ore formation,and in tracing associated material sources through the study of...As the principal ore mineral in various tungsten(-gold)deposits,scheelite(CaWO_(4))plays an important role in directly dating the timing of ore formation,and in tracing associated material sources through the study of its Sm-Nd geochronology and Nd isotopic characteristics.Since the retention of Sm-Nd systematics within scheelite is presently unconstrained,equivocal interpretations for isotopic data resulting from this method have occurred quite often in previous studies that apply these isotopic data.In order to better elucidate the closure of Sm-Nd in scheelite,the kinetics of Sm and Nd within this mineral lattice were investigated through calculation of diffusion constants presented herein.The following Arrhenius relations were obtained:D_(Nd)=4.00exp(-438 kJ·mol^(–1)/RT)cm^(2)/s D_(Sm)=1.85exp(-427 kJ·mol^(–1)/RT)cm^(2)/s showing diffusion rate of Nd is near identical to Sm in scheelite when at the same temperature.However,compared to other rare earth elements(REEs),which have markedly different atomic radii to either Nd or Sm,these are shown to exhibit a great variation in diffusivities.The observed trends in our data are in excellent agreement with the diffusion characteristics of REEs in other tetragonal ABO4 minerals,indicating that ionic radius is a key constraint to the diffusivity of REEs in the various crystal lattices.With this in mind,the same substitution mechanism and a very slight discrepancy in radii will allow us to infer that significant Sm/Nd diffusional fractionation in scheelite is unlikely to occur during most geological processes.Based upon the diffusion data determined herein,Sm and Nd closure temperatures and retention times in scheelite are discussed in terms of diffusion dynamics.Those results suggest that closure temperatures for Sm-Nd within this mineral are relatively high in contrast to the temperature ranges of ore-formation responsible for scheelite-related deposits,and any later thermal environments.It is likely,therefore,that relevant isotopic information could be easily retained under most geological conditions,since initial crystallization of the scheelite.In addition,comparison of this mineral-element pair over a range of temperatures with some other common minerals used as geochronometers(e.g.,zircon and apatite)indicates that Sm-Nd system has a slower diffusive rate in scheelite than for Sr in apatite or Ar in quartz,and only a little faster than for Pb in zircon.It should be noted,within most hydrothermal deposits where zircon has crystallized,its size is typically no more than 100μm,whereas scheelite commonly occurs as macroscopic grains.For this reason,the larger dimensions of scheelite would provide a robust Sm-Nd system more able to resist perturbations,relating to any later thermal process.As such Sm-Nd investigations of scheelite are akin to U-Pb within zircon samples used in isotopic dating.These observations indicate that Sm-Nd age and isotopic information can provide reliable data in all but the most extreme case,especially when data are extracted from macroscopic grains of scheelite that are chosen to be“pristine”(i.e.,free of surface alteration and/or fractures).展开更多
Garnet is a primary mineral in skarn deposits and plays a significant role in recording copious mineralization and metallogenic information.This study systematically investigates the geochemistry and geochronology of ...Garnet is a primary mineral in skarn deposits and plays a significant role in recording copious mineralization and metallogenic information.This study systematically investigates the geochemistry and geochronology of garnet and zircon in the Dafang Au-Pb-Zn-Ag deposit,which represents prominent gold mineralization in southern Hunan,China.Garnet samples with distinct zoning patterns and compositional variations were identified using various analytical techniques,including Backscattered Electron(BSE)imaging,Cathodoluminescence(CL)response,textural characterization,and analysis of rare-earth elements(REE),major contents,and trace element compositions.The garnet was dated U-Pb dating,which yielded a lower intercept age of 161.06±1.93 Ma.This age is older than the underlying granodiorite porphyry,which has a concordia age of 155.13±0.95 Ma determined by zircon U-Pb dating.These results suggest that the gold mineralization may be related to the concealed granite.Two groups of garnet changed from depleted Al garnet to enriched Al garnet,and the rare earth element(REE)patterns of these groups were converted from light REE(LREE)-enriched and heavy REE(HREE)-depleted with positive europium(Eu)anomalies to medium REE(MREE)-enriched from core to rim zoning.The different REE patterns of garnet in various zones may be attributed to changes in the fluid environment and late superposition alteration.The development of distal skarn in the southern Hunan could be a significant indicator for identifying gold mineralization.展开更多
The Magushan skarn Cu-Mo deposit is a representative example of the skarn mineralization occurring within the Xuancheng ore district of the Middle-Lower Yangtze River Metallogenic Belt of eastern China.The precise age...The Magushan skarn Cu-Mo deposit is a representative example of the skarn mineralization occurring within the Xuancheng ore district of the Middle-Lower Yangtze River Metallogenic Belt of eastern China.The precise age of an ore deposit is important for understanding the timing of mineralization relative to other geological events in a region and to fully place the formation of a mineral deposit within the geological context of other processes that occur within the study area.Here,we present new molybdenite Re-Os and titanite and andradite garnet U-Pb ages for the Magushan deposit and use these data to outline possible approaches for identifying genetic relationships in geologically complex areas.The spatial and paragenetic relationships between the intrusions,alteration,and mineralization within the study area indicates that the formation of the Magushan deposit is genetically associated with the porphyritic granodiorite.However,this is not always the case,as some areas contain complexly zoned plutons with multiple phases of intrusion or mineralization may be distal from or may not have any clear spatial relationship to a pluton.This means that it may not be possible to determine whether the mineralization formed as a result of single or multiple magmatic/hydrothermal events.As such,the approaches presented in this study provide an approach that allows the identification of any geochronological relationships between mineralization and intrusive events in areas more complex than the study area.Previously published zircon U-Pb data for the mineralization-related porphyritic granodiorite in this area yielded an age of 134.2±1.2 Ma(MSWD=1.4)whereas the Re-Os dating of molybdenite from the study area yielded an isochron age of 137.7±2.5 Ma(MSWD=0.43).The timing of the mineralizing event in the study area was further examined by the dating of magmatic accessory titanite and skarn-related andradite garnet,yielding U-Pb ages of 136.3±2.5 Ma(MSWD=3.2)and 135.9±2.7 Ma(MSWD=2.5),respectively.The dating of magmatic and hydrothermal activity within the Magushan area yields ages around 136 Ma,strongly suggesting that the mineralization in this area formed as a result of the emplacement of the intrusion.The dates presented in this study also provide the first indication of the timing of mineralization within the Xuancheng district.providing evidence of a close genetic relationship between the formation of the mineralization within the Xuancheng district and the Early Cretaceous magmatism that occurred in this area.This in turn suggests that other Early Cretaceous intrusive rocks within this region are likely to be associated with mineralization and should be considered highly prospective for future mineral exploration.This study also indicates that the dating of garnet and titanite can also provide reliable geochronological data and evidence of the timing of mineralization and magmatism,respectively,in areas lacking other dateable minerals(e.g.,molybdenite)or where the relationship between mineralization and magmatism is unclear,for example in areas with multiple stages of magmatism,with complexly zoned plutons,and with distal skarn mineralization.展开更多
The Grove Mountains, 400 km south of the Chinese Antarctic Zhongshan Station, are an inland continuation of the Pan-African-aged (i.e., Late Neoproterozoic/Cambrian) Prydz Belt, East Antarctica. In this paper we car...The Grove Mountains, 400 km south of the Chinese Antarctic Zhongshan Station, are an inland continuation of the Pan-African-aged (i.e., Late Neoproterozoic/Cambrian) Prydz Belt, East Antarctica. In this paper we carried out a combined U-Th-Pb monazite and Sm-Nd mineral-whole-rock dating on para- and orthogneisses from bedrock in the Grove Mountains. U-Th-Pb monazite dating of a cordierite-bearing pelitic paragneiss yields ages of 523 ? 4 Ma for the cores and 508 ? 6 Ma for the rims. Sm-Nd mineral-whole-rock isotopic analyses yield isochron ages of 536 ? 3 Ma for a coarse-grained felsic orthogneiss and 507 ? 30 Ma for a fine-grained quartzofeldspathic paragneiss. Combined with previously published age data in the Grove Mountains and adjacent areas, the older age of ~530 Ma is interpreted as the time of regional medium- to low-pressure granulite-facies metamorphism, and the younger age of ~510 Ma as the cooling age of the granulite terrane. The absence of evidence for a Grenville-aged (i.e., Late Mesoproterozoic/Early Neoproterozoic) metamorphic event indicates that the Grove Mountains have experienced only a single metamorphic cycle, i.e., Pan-African-aged, which distinguishes them from other polymetamorphic terranes in the Prydz Belt. This will provide important constraints on the controversial nature of the Prydz Belt.展开更多
Numerous lenses of garnet amphibolite occur in the garnet-bearing biotite-plagioclase gneiss belt in the Baishan area of the Beishan Orogen,which connects the Tianshan Orogen to the west and the Mongolia-Xing’anling ...Numerous lenses of garnet amphibolite occur in the garnet-bearing biotite-plagioclase gneiss belt in the Baishan area of the Beishan Orogen,which connects the Tianshan Orogen to the west and the Mongolia-Xing’anling Orogen to the east.The study of metamorphism in Beishan area is of great significance to explain the tectonic evolution of Beishan orogen.According to the microstructures,mineral relationships,and geothermobarometry,we identified four stages of mineral assemblages from the garnet amphibolite sample:(1) a pre-peak stage,which is recorded by the cores of garnet together with core-inclusions of plagioclase(Pl1);(2) a peak stage,which is recorded by the mantles of garnet together with mantle-inclusions of plagioclase(Pl2)+amphibole(Amp1)+Ilmenite(Ilm1)+biotite(Bt1),developed at temperature-pressure(P-T) conditions of 818.9-836.5℃ and7.3-9.2 kbar;(3) a retrograde stage,which is recorded by garnet rims + plagioclase(Pl3)+amphibole(Amp2)+orthopyroxene(Opx1)+biotite(Bt2)+Ilmenite(Ilm2),developed at P-T conditions of 796.1-836.9℃ and5.6-7.5 kbar;(4) a symplectitic stage,which is recorded by plagioclase(Pl4)+orthopyroxene(Opx2)+amphibole(Amp3)+biotite(Bt3) symplectites,developed at P-T conditions of 732 ±59.6℃ and 6.1 ±0.6 kbar.Moreover,the U-Pb dating of the Beishan garnet amphibolite indicates an age of 301.9 ±4.7 Ma for the protolith and 281.4±8.5 Ma for the peak metamorphic age.Therefore,the mineral assemblage,P-T conditions,and zircon U-Pb ages of the Beishan garnet amphibolite define a near-isothermal decompression of a clockwise P-T-t(Pressure-Temperature-time) path,indicating the presence of over thickened continental crust in the Huaniushan arc until the Early Permian,then the southern Beishan area underwent a process of thinning of the continental crust.展开更多
The thermal structure of subduction zones exerts a major influence on deep-seated mechanical and chemical processes controlling arc magmatism, seismicity, and global element cycles. Accretionary complexes exposed inla...The thermal structure of subduction zones exerts a major influence on deep-seated mechanical and chemical processes controlling arc magmatism, seismicity, and global element cycles. Accretionary complexes exposed inland may comprise tectonic blocks with contrasting pressureetemperature(Pe T)histories, making it possible to investigate the dynamics and thermal evolution of former subduction interfaces. With this aim, we present new Lue Hf geochronological results for mafic rocks of the Halilbag?Complex(Anatolia) that evolved along different thermal gradients. Samples include a lawsoniteeepidote blueschist, a lawsoniteeepidote eclogite, and an epidote eclogite(all with counter-clockwise Pe T paths),a prograde lawsonite blueschist with a "hairpin"-type Pe T path, and a garnet amphibolite from the overlying sub-ophiolitic metamorphic sole. Equilibrium phase diagrams suggest that the garnet amphibolite formed at w0.6 -0.7 GPa and 800 -850℃, whereas the prograde lawsonite blueschist records burial from 2.1 GPa and 420℃ to 2.6 GPa and 520℃. Well-defined Lue Hf isochrons were obtained for the epidote eclogite(92.38 ± 0.22 Ma) and the lawsoniteeepidote blueschist(90.19 ± 0.54 Ma),suggesting rapid garnet growth. The lawsoniteeepidote eclogite(87.30 ± 0.39 Ma) and the prograde lawsonite blueschist(ca. 86 Ma) are younger, whereas the garnet amphibolite(104.5 ± 3.5 Ma) is older.Our data reveal a consistent trend of progressively decreasing geothermal gradient from granulite-facies conditions at ~104 Ma to the epidote-eclogite facies around 92 Ma, and the lawsonite blueschist-facies between 90 Ma and 86 Ma. Three Lue Hf garnet dates(between 92 Ma and 87 Ma) weighted toward the growth of post-peak rims(as indicated by Lu distribution in garnet) suggest that the HP/LT rocks were exhumed continuously and not episodically. We infer that HP/LT metamorphic rocks within the Halilbag?Complex were subjected to continuous return flow, with "warm" rocks being exhumed during the tectonic burial of "cold" ones. Our results, combined with regional geological constraints, allow us to speculate that subduction started at a transform fault near a mid-oceanic spreading centre. Following its formation, this ancient subduction interface evolved thermally over more than 15 Myr, most likely as a result of heat dissipation rather than crustal underplating.展开更多
The Aqishan lead-zinc deposit,located in the Jueluotag metallogenic belt of eastern Tianshan,Xinjiang,Northwest China,has a stratiform occurrence in the marine volcanic tuff of the Yamansu Formation.The ore body has a...The Aqishan lead-zinc deposit,located in the Jueluotag metallogenic belt of eastern Tianshan,Xinjiang,Northwest China,has a stratiform occurrence in the marine volcanic tuff of the Yamansu Formation.The ore body has a typical double-layer structure,having a stratified,stratoid,lenticular upper part and a veined,stockwork-like lower part.The occurrence of the upper orebody is consistent with that of the volcanic tuff wall rock.The ore minerals are mainly chalcopyrite,pyrite,sphalerite,galena and magnetite,the altered minerals mainly being silicified,such as sericite,chlorite,epidote,garnet.The garnetized skarn,being stratiform and stratoid,is closely related to the upper part of the orebody.Geological observations show that the limestone in the ore-bearing Yamansu Formation is not marbleized and skarnized.Spatially,it is associated with the ferromanganese deposits in the marine volcanic rocks of the Yamansu Formation.These geological features reflect the likelihood that the Aqishan lead-zinc deposit is a hydrothermal exhalation sedimentary deposit.The results from the EPMA show that the garnet is mainly composed of grossular-andradite series,contents being in a range of 34.791-37.8%SiO_(2),32.493-34.274%CaO,8.454-27.275%FeO,0.012-15.293%Al_(2)O_(3),0.351-1.413%MnO,and lower values of 0.013-1.057%TiO_(2).The content of SiO_(2) vs.CaO and FeO vs.Al_(2)O_(3) has a significant positive correlation.The results of ICP-MS analysis for the garnet show that the REE pattern is oblique to right in general.The total amount of rare earth elements is relatively low,ΣREE=71.045-826.52 ppm,which is relatively enriched for LREE and depleted for HREE.LREE/HREE=8.66-4157.75,La_(N)/Yb_(N)=23.51-984.34,with obvious positive Eu and Ce anomalies(δEu=2.27-76.15,δCe=0.94-1.85).This result is similar to the REE characteristics of ore-bearing rhyolite volcanic rocks,showing that the garnet was formed in an oxidizing environment and affected by clear hydrothermal activity.The U-Pb isotopic dating of garnet by fs-LA-HR-ICP-MS gives an age of 316.3±4.4 Ma(MSWD=1.4),which is consistent with the formation time of the Yamansu Formation.According to the study of deposit characteristics and geochemical characteristics,this study concludes that the Aqishan lead-zinc deposit is a hydrothermal exhalation sedimentary deposit,the garnet being caused by hydrothermal exhalative sedimentation.展开更多
Determining the precise timing of mineralization and mineralizing events is crucial to understanding regional mineralizing and other geological events and processes.However,there are a number of mineralogical and anal...Determining the precise timing of mineralization and mineralizing events is crucial to understanding regional mineralizing and other geological events and processes.However,there are a number of mineralogical and analytical limitations to the approaches developed for the absolute dating of mineralizing systems,such as molybdenite Re-Os and zircon and garnet U-Pb,among others.This means that the precise and accurate dating of mineralizing systems that may not contain minerals suitable for dating using existing approaches requires the development of new(and ideally in situ)approaches to absolute dating.This study outlines a new in situ analytical approach that has the potential to rapidly and accurately evaluate the timing of ore formation.Our study employs a novel application of in situ scheelite U-Pb dating analysis using laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS)and samples from the Qiaomaishan deposit,a representative example of skarn mineralization within the Xuancheng ore district of eastern China.Our approach to scheelite dating of the deposit is verified by cross-comparison to dating of cogenetic garnet and apatite,proving the effectiveness of this approach.Our new approach to dating of scheelite-bearing geological systems is rapid,cheap,requires little sample preparation,and is undertaken in situ,allowing crucial geological and mineralogical context to be retained during analysis.The approaches outlined here not only allow the determination of the absolute timing of formation of the Qiaomaishan deposit through the U-Pb dating of scheelite[138.6±3.2 Ma,N=39,mean square weighted deviation(MSWD)=1.17],garnet(138.4±1.0 Ma,N=40,MSWD=1.3),and apatite(139.6+3.3 Ma,N=35,MSWD=0.72),but also further supports the theoretical genetic links between this mineralization and the emplacement of a proximal porphyritic granodiorite intrusion(zircon U-Pb age:139.5±1.2 Ma,N=23,MSWD=0.3).Moreover,our research indicates that the higher the concentrations of U within scheelite,the more suitable that scheelite is for U-Pb dating,with the main factor controlling the U content of scheelite seemingly being variations in oxygen fugacity conditions.This novel approach provides a potentially powerful tool,not just for the dating of skarn systems but also with potential applications in orogenic and intrusion-related gold,porphyry W-Mo,and greisen mineralizing systems as well as other scheelite-bearing geological bodies or geological systems.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.41403035)the National Basic Research Program of China(Grant No.2014CB440901)。
文摘As the principal ore mineral in various tungsten(-gold)deposits,scheelite(CaWO_(4))plays an important role in directly dating the timing of ore formation,and in tracing associated material sources through the study of its Sm-Nd geochronology and Nd isotopic characteristics.Since the retention of Sm-Nd systematics within scheelite is presently unconstrained,equivocal interpretations for isotopic data resulting from this method have occurred quite often in previous studies that apply these isotopic data.In order to better elucidate the closure of Sm-Nd in scheelite,the kinetics of Sm and Nd within this mineral lattice were investigated through calculation of diffusion constants presented herein.The following Arrhenius relations were obtained:D_(Nd)=4.00exp(-438 kJ·mol^(–1)/RT)cm^(2)/s D_(Sm)=1.85exp(-427 kJ·mol^(–1)/RT)cm^(2)/s showing diffusion rate of Nd is near identical to Sm in scheelite when at the same temperature.However,compared to other rare earth elements(REEs),which have markedly different atomic radii to either Nd or Sm,these are shown to exhibit a great variation in diffusivities.The observed trends in our data are in excellent agreement with the diffusion characteristics of REEs in other tetragonal ABO4 minerals,indicating that ionic radius is a key constraint to the diffusivity of REEs in the various crystal lattices.With this in mind,the same substitution mechanism and a very slight discrepancy in radii will allow us to infer that significant Sm/Nd diffusional fractionation in scheelite is unlikely to occur during most geological processes.Based upon the diffusion data determined herein,Sm and Nd closure temperatures and retention times in scheelite are discussed in terms of diffusion dynamics.Those results suggest that closure temperatures for Sm-Nd within this mineral are relatively high in contrast to the temperature ranges of ore-formation responsible for scheelite-related deposits,and any later thermal environments.It is likely,therefore,that relevant isotopic information could be easily retained under most geological conditions,since initial crystallization of the scheelite.In addition,comparison of this mineral-element pair over a range of temperatures with some other common minerals used as geochronometers(e.g.,zircon and apatite)indicates that Sm-Nd system has a slower diffusive rate in scheelite than for Sr in apatite or Ar in quartz,and only a little faster than for Pb in zircon.It should be noted,within most hydrothermal deposits where zircon has crystallized,its size is typically no more than 100μm,whereas scheelite commonly occurs as macroscopic grains.For this reason,the larger dimensions of scheelite would provide a robust Sm-Nd system more able to resist perturbations,relating to any later thermal process.As such Sm-Nd investigations of scheelite are akin to U-Pb within zircon samples used in isotopic dating.These observations indicate that Sm-Nd age and isotopic information can provide reliable data in all but the most extreme case,especially when data are extracted from macroscopic grains of scheelite that are chosen to be“pristine”(i.e.,free of surface alteration and/or fractures).
基金financially supported by the National Key Research and Development Plan(Grant No.2023YFC2906801)。
文摘Garnet is a primary mineral in skarn deposits and plays a significant role in recording copious mineralization and metallogenic information.This study systematically investigates the geochemistry and geochronology of garnet and zircon in the Dafang Au-Pb-Zn-Ag deposit,which represents prominent gold mineralization in southern Hunan,China.Garnet samples with distinct zoning patterns and compositional variations were identified using various analytical techniques,including Backscattered Electron(BSE)imaging,Cathodoluminescence(CL)response,textural characterization,and analysis of rare-earth elements(REE),major contents,and trace element compositions.The garnet was dated U-Pb dating,which yielded a lower intercept age of 161.06±1.93 Ma.This age is older than the underlying granodiorite porphyry,which has a concordia age of 155.13±0.95 Ma determined by zircon U-Pb dating.These results suggest that the gold mineralization may be related to the concealed granite.Two groups of garnet changed from depleted Al garnet to enriched Al garnet,and the rare earth element(REE)patterns of these groups were converted from light REE(LREE)-enriched and heavy REE(HREE)-depleted with positive europium(Eu)anomalies to medium REE(MREE)-enriched from core to rim zoning.The different REE patterns of garnet in various zones may be attributed to changes in the fluid environment and late superposition alteration.The development of distal skarn in the southern Hunan could be a significant indicator for identifying gold mineralization.
基金financially supported by funds from the National Key R&D Program of China(Grant Nos.2016YFC0600209,2016YFC0600206)the National Natural Science Foundation of China(Grant No.41820104007)+1 种基金the Scientific and Technological Program of Land and Resources of Anhui province(Grant No.2016-K-4)the China Scholarship Council(Grant No.201906690036)。
文摘The Magushan skarn Cu-Mo deposit is a representative example of the skarn mineralization occurring within the Xuancheng ore district of the Middle-Lower Yangtze River Metallogenic Belt of eastern China.The precise age of an ore deposit is important for understanding the timing of mineralization relative to other geological events in a region and to fully place the formation of a mineral deposit within the geological context of other processes that occur within the study area.Here,we present new molybdenite Re-Os and titanite and andradite garnet U-Pb ages for the Magushan deposit and use these data to outline possible approaches for identifying genetic relationships in geologically complex areas.The spatial and paragenetic relationships between the intrusions,alteration,and mineralization within the study area indicates that the formation of the Magushan deposit is genetically associated with the porphyritic granodiorite.However,this is not always the case,as some areas contain complexly zoned plutons with multiple phases of intrusion or mineralization may be distal from or may not have any clear spatial relationship to a pluton.This means that it may not be possible to determine whether the mineralization formed as a result of single or multiple magmatic/hydrothermal events.As such,the approaches presented in this study provide an approach that allows the identification of any geochronological relationships between mineralization and intrusive events in areas more complex than the study area.Previously published zircon U-Pb data for the mineralization-related porphyritic granodiorite in this area yielded an age of 134.2±1.2 Ma(MSWD=1.4)whereas the Re-Os dating of molybdenite from the study area yielded an isochron age of 137.7±2.5 Ma(MSWD=0.43).The timing of the mineralizing event in the study area was further examined by the dating of magmatic accessory titanite and skarn-related andradite garnet,yielding U-Pb ages of 136.3±2.5 Ma(MSWD=3.2)and 135.9±2.7 Ma(MSWD=2.5),respectively.The dating of magmatic and hydrothermal activity within the Magushan area yields ages around 136 Ma,strongly suggesting that the mineralization in this area formed as a result of the emplacement of the intrusion.The dates presented in this study also provide the first indication of the timing of mineralization within the Xuancheng district.providing evidence of a close genetic relationship between the formation of the mineralization within the Xuancheng district and the Early Cretaceous magmatism that occurred in this area.This in turn suggests that other Early Cretaceous intrusive rocks within this region are likely to be associated with mineralization and should be considered highly prospective for future mineral exploration.This study also indicates that the dating of garnet and titanite can also provide reliable geochronological data and evidence of the timing of mineralization and magmatism,respectively,in areas lacking other dateable minerals(e.g.,molybdenite)or where the relationship between mineralization and magmatism is unclear,for example in areas with multiple stages of magmatism,with complexly zoned plutons,and with distal skarn mineralization.
基金financial support from the National Natural Science Foundation of China (Grant no.41530209)the Central Public-Interest Scientific Institution Basal Research Fund (Grant no.JYYWF201819)
文摘The Grove Mountains, 400 km south of the Chinese Antarctic Zhongshan Station, are an inland continuation of the Pan-African-aged (i.e., Late Neoproterozoic/Cambrian) Prydz Belt, East Antarctica. In this paper we carried out a combined U-Th-Pb monazite and Sm-Nd mineral-whole-rock dating on para- and orthogneisses from bedrock in the Grove Mountains. U-Th-Pb monazite dating of a cordierite-bearing pelitic paragneiss yields ages of 523 ? 4 Ma for the cores and 508 ? 6 Ma for the rims. Sm-Nd mineral-whole-rock isotopic analyses yield isochron ages of 536 ? 3 Ma for a coarse-grained felsic orthogneiss and 507 ? 30 Ma for a fine-grained quartzofeldspathic paragneiss. Combined with previously published age data in the Grove Mountains and adjacent areas, the older age of ~530 Ma is interpreted as the time of regional medium- to low-pressure granulite-facies metamorphism, and the younger age of ~510 Ma as the cooling age of the granulite terrane. The absence of evidence for a Grenville-aged (i.e., Late Mesoproterozoic/Early Neoproterozoic) metamorphic event indicates that the Grove Mountains have experienced only a single metamorphic cycle, i.e., Pan-African-aged, which distinguishes them from other polymetamorphic terranes in the Prydz Belt. This will provide important constraints on the controversial nature of the Prydz Belt.
基金Financial support for this study was jointly provided by the Geological and Mineral Survey in Nalati-Yingmaotuo area of Tianshan-Beishan metallogenic belt (DD20160009)the National Natural Science Foundation of China (Grant Nos. 41572179,41872218,41421002 and 41372204)
文摘Numerous lenses of garnet amphibolite occur in the garnet-bearing biotite-plagioclase gneiss belt in the Baishan area of the Beishan Orogen,which connects the Tianshan Orogen to the west and the Mongolia-Xing’anling Orogen to the east.The study of metamorphism in Beishan area is of great significance to explain the tectonic evolution of Beishan orogen.According to the microstructures,mineral relationships,and geothermobarometry,we identified four stages of mineral assemblages from the garnet amphibolite sample:(1) a pre-peak stage,which is recorded by the cores of garnet together with core-inclusions of plagioclase(Pl1);(2) a peak stage,which is recorded by the mantles of garnet together with mantle-inclusions of plagioclase(Pl2)+amphibole(Amp1)+Ilmenite(Ilm1)+biotite(Bt1),developed at temperature-pressure(P-T) conditions of 818.9-836.5℃ and7.3-9.2 kbar;(3) a retrograde stage,which is recorded by garnet rims + plagioclase(Pl3)+amphibole(Amp2)+orthopyroxene(Opx1)+biotite(Bt2)+Ilmenite(Ilm2),developed at P-T conditions of 796.1-836.9℃ and5.6-7.5 kbar;(4) a symplectitic stage,which is recorded by plagioclase(Pl4)+orthopyroxene(Opx2)+amphibole(Amp3)+biotite(Bt3) symplectites,developed at P-T conditions of 732 ±59.6℃ and 6.1 ±0.6 kbar.Moreover,the U-Pb dating of the Beishan garnet amphibolite indicates an age of 301.9 ±4.7 Ma for the protolith and 281.4±8.5 Ma for the peak metamorphic age.Therefore,the mineral assemblage,P-T conditions,and zircon U-Pb ages of the Beishan garnet amphibolite define a near-isothermal decompression of a clockwise P-T-t(Pressure-Temperature-time) path,indicating the presence of over thickened continental crust in the Huaniushan arc until the Early Permian,then the southern Beishan area underwent a process of thinning of the continental crust.
基金Funding by the Deutsche Forschungsgemeinschaft (projectPO17-91)
文摘The thermal structure of subduction zones exerts a major influence on deep-seated mechanical and chemical processes controlling arc magmatism, seismicity, and global element cycles. Accretionary complexes exposed inland may comprise tectonic blocks with contrasting pressureetemperature(Pe T)histories, making it possible to investigate the dynamics and thermal evolution of former subduction interfaces. With this aim, we present new Lue Hf geochronological results for mafic rocks of the Halilbag?Complex(Anatolia) that evolved along different thermal gradients. Samples include a lawsoniteeepidote blueschist, a lawsoniteeepidote eclogite, and an epidote eclogite(all with counter-clockwise Pe T paths),a prograde lawsonite blueschist with a "hairpin"-type Pe T path, and a garnet amphibolite from the overlying sub-ophiolitic metamorphic sole. Equilibrium phase diagrams suggest that the garnet amphibolite formed at w0.6 -0.7 GPa and 800 -850℃, whereas the prograde lawsonite blueschist records burial from 2.1 GPa and 420℃ to 2.6 GPa and 520℃. Well-defined Lue Hf isochrons were obtained for the epidote eclogite(92.38 ± 0.22 Ma) and the lawsoniteeepidote blueschist(90.19 ± 0.54 Ma),suggesting rapid garnet growth. The lawsoniteeepidote eclogite(87.30 ± 0.39 Ma) and the prograde lawsonite blueschist(ca. 86 Ma) are younger, whereas the garnet amphibolite(104.5 ± 3.5 Ma) is older.Our data reveal a consistent trend of progressively decreasing geothermal gradient from granulite-facies conditions at ~104 Ma to the epidote-eclogite facies around 92 Ma, and the lawsonite blueschist-facies between 90 Ma and 86 Ma. Three Lue Hf garnet dates(between 92 Ma and 87 Ma) weighted toward the growth of post-peak rims(as indicated by Lu distribution in garnet) suggest that the HP/LT rocks were exhumed continuously and not episodically. We infer that HP/LT metamorphic rocks within the Halilbag?Complex were subjected to continuous return flow, with "warm" rocks being exhumed during the tectonic burial of "cold" ones. Our results, combined with regional geological constraints, allow us to speculate that subduction started at a transform fault near a mid-oceanic spreading centre. Following its formation, this ancient subduction interface evolved thermally over more than 15 Myr, most likely as a result of heat dissipation rather than crustal underplating.
基金by a grant from the Xinjiang Geological Exploration Fund Project Management Center(Grant No.Y14-5-LQ05)。
文摘The Aqishan lead-zinc deposit,located in the Jueluotag metallogenic belt of eastern Tianshan,Xinjiang,Northwest China,has a stratiform occurrence in the marine volcanic tuff of the Yamansu Formation.The ore body has a typical double-layer structure,having a stratified,stratoid,lenticular upper part and a veined,stockwork-like lower part.The occurrence of the upper orebody is consistent with that of the volcanic tuff wall rock.The ore minerals are mainly chalcopyrite,pyrite,sphalerite,galena and magnetite,the altered minerals mainly being silicified,such as sericite,chlorite,epidote,garnet.The garnetized skarn,being stratiform and stratoid,is closely related to the upper part of the orebody.Geological observations show that the limestone in the ore-bearing Yamansu Formation is not marbleized and skarnized.Spatially,it is associated with the ferromanganese deposits in the marine volcanic rocks of the Yamansu Formation.These geological features reflect the likelihood that the Aqishan lead-zinc deposit is a hydrothermal exhalation sedimentary deposit.The results from the EPMA show that the garnet is mainly composed of grossular-andradite series,contents being in a range of 34.791-37.8%SiO_(2),32.493-34.274%CaO,8.454-27.275%FeO,0.012-15.293%Al_(2)O_(3),0.351-1.413%MnO,and lower values of 0.013-1.057%TiO_(2).The content of SiO_(2) vs.CaO and FeO vs.Al_(2)O_(3) has a significant positive correlation.The results of ICP-MS analysis for the garnet show that the REE pattern is oblique to right in general.The total amount of rare earth elements is relatively low,ΣREE=71.045-826.52 ppm,which is relatively enriched for LREE and depleted for HREE.LREE/HREE=8.66-4157.75,La_(N)/Yb_(N)=23.51-984.34,with obvious positive Eu and Ce anomalies(δEu=2.27-76.15,δCe=0.94-1.85).This result is similar to the REE characteristics of ore-bearing rhyolite volcanic rocks,showing that the garnet was formed in an oxidizing environment and affected by clear hydrothermal activity.The U-Pb isotopic dating of garnet by fs-LA-HR-ICP-MS gives an age of 316.3±4.4 Ma(MSWD=1.4),which is consistent with the formation time of the Yamansu Formation.According to the study of deposit characteristics and geochemical characteristics,this study concludes that the Aqishan lead-zinc deposit is a hydrothermal exhalation sedimentary deposit,the garnet being caused by hydrothermal exhalative sedimentation.
基金the National Natural Science Foundation of China(Grant Nos.41820104007,91962218)and the China Scholarship Council(Grant No.201906690036).
文摘Determining the precise timing of mineralization and mineralizing events is crucial to understanding regional mineralizing and other geological events and processes.However,there are a number of mineralogical and analytical limitations to the approaches developed for the absolute dating of mineralizing systems,such as molybdenite Re-Os and zircon and garnet U-Pb,among others.This means that the precise and accurate dating of mineralizing systems that may not contain minerals suitable for dating using existing approaches requires the development of new(and ideally in situ)approaches to absolute dating.This study outlines a new in situ analytical approach that has the potential to rapidly and accurately evaluate the timing of ore formation.Our study employs a novel application of in situ scheelite U-Pb dating analysis using laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS)and samples from the Qiaomaishan deposit,a representative example of skarn mineralization within the Xuancheng ore district of eastern China.Our approach to scheelite dating of the deposit is verified by cross-comparison to dating of cogenetic garnet and apatite,proving the effectiveness of this approach.Our new approach to dating of scheelite-bearing geological systems is rapid,cheap,requires little sample preparation,and is undertaken in situ,allowing crucial geological and mineralogical context to be retained during analysis.The approaches outlined here not only allow the determination of the absolute timing of formation of the Qiaomaishan deposit through the U-Pb dating of scheelite[138.6±3.2 Ma,N=39,mean square weighted deviation(MSWD)=1.17],garnet(138.4±1.0 Ma,N=40,MSWD=1.3),and apatite(139.6+3.3 Ma,N=35,MSWD=0.72),but also further supports the theoretical genetic links between this mineralization and the emplacement of a proximal porphyritic granodiorite intrusion(zircon U-Pb age:139.5±1.2 Ma,N=23,MSWD=0.3).Moreover,our research indicates that the higher the concentrations of U within scheelite,the more suitable that scheelite is for U-Pb dating,with the main factor controlling the U content of scheelite seemingly being variations in oxygen fugacity conditions.This novel approach provides a potentially powerful tool,not just for the dating of skarn systems but also with potential applications in orogenic and intrusion-related gold,porphyry W-Mo,and greisen mineralizing systems as well as other scheelite-bearing geological bodies or geological systems.