A self-invented atomization process, in which molten metal is atomized into powder by a high-velocity gas stream carrying solid particles as the atomization medium, was introduced. The characteristics of powders prepa...A self-invented atomization process, in which molten metal is atomized into powder by a high-velocity gas stream carrying solid particles as the atomization medium, was introduced. The characteristics of powders prepared by common gas atomization and dual-phase flow atomization under similar conditions were compared. The experimental results show that the dual-phase flow-atomized powders have average particle sizes that are one-half that of the common gas-atomized particles;additionally, they possess a finer microstructure and higher cooling rate under the same atomization gas pressure and the same gas flow. The Weber number in the crash criteria of liquid atomization is adopted to measure the crash ability of the atomization media. The Weber number of the dual-phase flow atomization medium is the sum of that of the gas and the solid particles. Furthermore, the critical equation of the crash model in dual-phase flow atomization is established, and the main regularities associated with this process were analyzed.展开更多
A three-dimensional Eulerian multiphase model, with closure law according to the kinetic theory of granular flow, was used to study the gas/solid flow behaviors in spout-fluid beds. The influences of the coefficient o...A three-dimensional Eulerian multiphase model, with closure law according to the kinetic theory of granular flow, was used to study the gas/solid flow behaviors in spout-fluid beds. The influences of the coefficient of restitution due to non-ideal particle collisions on the simulated results were tested. It is demonstrated that the simulated result is strongly affected by the coefficient of restitution. Comparison of simulations with experiments in a small spout-fluid bed showed that an appropriate coefficient of restitution of 0.93 was necessary to simulate the flow characteristics in an underdesigned large size of spout-fluid bed coal gasifier with diameter of lm and height of 6m. The internal jet and gas/solid flow patterns at different operating conditions were obtained. The simulations show that an optimal gas/solid flow pattern for coal gasification is found when the spouting gas flow rate is equal to the fluidizing gas flow rate and the total of them is two and a half times the minimum fluidizing gas flow rate. Besides, the radial distributions of particle velocity and gas velocity show similar tendencies; the radial distributions of particle phase pressure due to particle collisions and the particle pseudo-temperature corresponding to the macroscopic kinetic energy of the random particle motion also show similar tendencies. These indicate that both gas drag force and particle collisions dominate the movement of particles.展开更多
In this paper we analyze the characteristics of a flow transducer based on polarized charge. The effects of the charged particles in pneumatic pipeline on the measurement pipe potential are discussed in detail and the...In this paper we analyze the characteristics of a flow transducer based on polarized charge. The effects of the charged particles in pneumatic pipeline on the measurement pipe potential are discussed in detail and the equivalent circuits of the potential measurement are presented. On this bases, the relationships between mass flowrate and the electrical potential are obtained for different time constants of the measurement circuit. A satisfactory model is presented based on the characteristics of gas solid two phase flow. The linearity of the model is verified by the experiment results. The transducer, which is coaxially connected with the transport pipeline, does not disturb the flow state and has the features of ruggedness and durability, it is especially suitable for industry process control.展开更多
A full-cycle numerical simulation of a circulating fluidized bed(CFB)by the use of the computational particle fluid dynamics(CPFD)method has been developed.The effects of the presence or absence of the secondary air,d...A full-cycle numerical simulation of a circulating fluidized bed(CFB)by the use of the computational particle fluid dynamics(CPFD)method has been developed.The effects of the presence or absence of the secondary air,different secondary air positions,and different secondary air ratios on the gas–solid flow characteristics were explored.The results show that the presence of the secondary air makes a core-annular structure of the velocity distribution of particles in the fluidized bed,which enhances the uniformity of particles’distribution and the stability of fluidization.The position and the ratio of the secondary air have a significant impact on the particle distribution,particle flow rate,and gas flow rate in the fluidized bed.When the secondary air position and ratio are optimal,the particles,particle flow rate,and air flow rate in the CFB are evenly distributed,the gas–solid flow state is good,and the CFB can operate stably.展开更多
Particle polydispersity is ubiquitous in industrial fluidized beds,which possesses a significant impact on hydrodynamics of gas-solid flow.Computational fluid dynamics-discrete element method(CFD-DEM)is promising to a...Particle polydispersity is ubiquitous in industrial fluidized beds,which possesses a significant impact on hydrodynamics of gas-solid flow.Computational fluid dynamics-discrete element method(CFD-DEM)is promising to adequately simulate gas-solid flows with continuous particle size distribution(PSD)while it still suffers from high computational cost.Corresponding coarsening models are thereby desired.This work extends the coarse-grid model to polydisperse systems.Well-resolved simulations with different PSDs are processed through a filtering procedure to modify the gas-particle drag force in coarse-grid simulations.We reveal that the drag correction of individual particle exhibits a dependence on filtered solid volume fraction and filtered slip velocity for both monodisperse and polydisperse systems.Subsequently,the effect of particle size and surrounding PSD is quantified by the ratio of particle size to Sauter mean diameter.Drag correction models for systems with monodisperse and continuous PSD are developed.A priori analysis demonstrates that the developed models exhibit reliable prediction accuracy.展开更多
A three-dimensional(3D) fast fluidized bed with the riser of 3.0 m in height and 0.1 m in inner diameter was established to experimentally study the cluster behaviors of Geldart B particles. Five kinds of quartz sand ...A three-dimensional(3D) fast fluidized bed with the riser of 3.0 m in height and 0.1 m in inner diameter was established to experimentally study the cluster behaviors of Geldart B particles. Five kinds of quartz sand particles(dp= 0.100, 0.139, 0.177, 0.250 and 0.375 mm and ρp= 2480 kg·m^(-3)) were respectively investigated, with the total mass of the bed material kept as 10 kg. The superficial gas velocity in the riser ranges from 2.486 to 5.594 m·s^(-1) and the solid mass flux alters from 30 to 70 kg·((m^(-2)·s))^(-1). Cluster characteristics and evolutionary processes in the different positions of the riser were captured by the cluster visualization systems and analyzed by the self-developed binary image processing. The results found four typical cluster structures in the riser,i.e., the macro stripe-shaped cluster, saddle-shaped cluster, U-shaped cluster and the micro cluster. The increasing superficial gas velocity and particle sizes result in the increasing average cluster size and the decreasing cluster time fraction, while the solid mass flux in the riser have the reverse influences on the cluster size and time fraction. Additionally, clusters in the upper region of the riser often have the larger size and time fraction than that in the lower region. All these effects of operating conditions on clusters become less obvious when particle size is less than 0.100 mm.展开更多
The Reynolds stress transport model and the Eulerian two-fluid model provided by the FLUENT code were applied to evaluate the gas-particle two-phase flow in the ceramic filter vessel. The ceramic filter vessel contain...The Reynolds stress transport model and the Eulerian two-fluid model provided by the FLUENT code were applied to evaluate the gas-particle two-phase flow in the ceramic filter vessel. The ceramic filter vessel contains six candle filters, which are arranged in the form of equilateral hexagon. The variation of the areal density of the filter cake during the filtration and the back-pulse process were analyzed. The coupling effect between filters, gas and solid, filtration and pulse cleaning process were investigated, respectively. The numerical results show a good approach to predict the particle distribution in the vessel and the particle deposition on the filter element. This study provides the base for the intensive study on the analysis of the gas-particle flow in the filter vessel.展开更多
Sand/dust test is one of the key projects to examine the environmental adaptability of ordnance equipment.In order to decrease the abrasion of test facility caused by the sand/dust particles,the particles contained in...Sand/dust test is one of the key projects to examine the environmental adaptability of ordnance equipment.In order to decrease the abrasion of test facility caused by the sand/dust particles,the particles contained in the airflowneed to be reclaimed effectively.Amathematical model of Useparator is established.The flowfield and the trajectories of particles inside the separator are obtained using a numerical simulation method,and the separation efficiency and pressure drop of separator with different rows of separate components are also obtained at various flowvelocities.The simulation results indicate that the efficiency of U inertia separator is affected by the flowvelocity evidently,and a reasonably designed separator can meet the requirement of the separation efficiency in particular situation.The results can be use as reference for the design and test of sand/dust separate systems.展开更多
文摘A self-invented atomization process, in which molten metal is atomized into powder by a high-velocity gas stream carrying solid particles as the atomization medium, was introduced. The characteristics of powders prepared by common gas atomization and dual-phase flow atomization under similar conditions were compared. The experimental results show that the dual-phase flow-atomized powders have average particle sizes that are one-half that of the common gas-atomized particles;additionally, they possess a finer microstructure and higher cooling rate under the same atomization gas pressure and the same gas flow. The Weber number in the crash criteria of liquid atomization is adopted to measure the crash ability of the atomization media. The Weber number of the dual-phase flow atomization medium is the sum of that of the gas and the solid particles. Furthermore, the critical equation of the crash model in dual-phase flow atomization is established, and the main regularities associated with this process were analyzed.
基金Supported by the National Key Program of Basic Research in China (No.2004CB217702, No.2005CB221202, No.2006CB20030201) and the National Natural Science Foundation of China (No.20590367, No.50676021, No.50606006).
文摘A three-dimensional Eulerian multiphase model, with closure law according to the kinetic theory of granular flow, was used to study the gas/solid flow behaviors in spout-fluid beds. The influences of the coefficient of restitution due to non-ideal particle collisions on the simulated results were tested. It is demonstrated that the simulated result is strongly affected by the coefficient of restitution. Comparison of simulations with experiments in a small spout-fluid bed showed that an appropriate coefficient of restitution of 0.93 was necessary to simulate the flow characteristics in an underdesigned large size of spout-fluid bed coal gasifier with diameter of lm and height of 6m. The internal jet and gas/solid flow patterns at different operating conditions were obtained. The simulations show that an optimal gas/solid flow pattern for coal gasification is found when the spouting gas flow rate is equal to the fluidizing gas flow rate and the total of them is two and a half times the minimum fluidizing gas flow rate. Besides, the radial distributions of particle velocity and gas velocity show similar tendencies; the radial distributions of particle phase pressure due to particle collisions and the particle pseudo-temperature corresponding to the macroscopic kinetic energy of the random particle motion also show similar tendencies. These indicate that both gas drag force and particle collisions dominate the movement of particles.
文摘In this paper we analyze the characteristics of a flow transducer based on polarized charge. The effects of the charged particles in pneumatic pipeline on the measurement pipe potential are discussed in detail and the equivalent circuits of the potential measurement are presented. On this bases, the relationships between mass flowrate and the electrical potential are obtained for different time constants of the measurement circuit. A satisfactory model is presented based on the characteristics of gas solid two phase flow. The linearity of the model is verified by the experiment results. The transducer, which is coaxially connected with the transport pipeline, does not disturb the flow state and has the features of ruggedness and durability, it is especially suitable for industry process control.
基金the National Key Research and Development Program of China(grant No.2022YFC2904401)Guangxi Science and Technology Major Project(grant No.GuiKe AA23023033).
文摘A full-cycle numerical simulation of a circulating fluidized bed(CFB)by the use of the computational particle fluid dynamics(CPFD)method has been developed.The effects of the presence or absence of the secondary air,different secondary air positions,and different secondary air ratios on the gas–solid flow characteristics were explored.The results show that the presence of the secondary air makes a core-annular structure of the velocity distribution of particles in the fluidized bed,which enhances the uniformity of particles’distribution and the stability of fluidization.The position and the ratio of the secondary air have a significant impact on the particle distribution,particle flow rate,and gas flow rate in the fluidized bed.When the secondary air position and ratio are optimal,the particles,particle flow rate,and air flow rate in the CFB are evenly distributed,the gas–solid flow state is good,and the CFB can operate stably.
基金supported by the National Natural Science Foundation of China (grant Nos.91834303 and 21625603).
文摘Particle polydispersity is ubiquitous in industrial fluidized beds,which possesses a significant impact on hydrodynamics of gas-solid flow.Computational fluid dynamics-discrete element method(CFD-DEM)is promising to adequately simulate gas-solid flows with continuous particle size distribution(PSD)while it still suffers from high computational cost.Corresponding coarsening models are thereby desired.This work extends the coarse-grid model to polydisperse systems.Well-resolved simulations with different PSDs are processed through a filtering procedure to modify the gas-particle drag force in coarse-grid simulations.We reveal that the drag correction of individual particle exhibits a dependence on filtered solid volume fraction and filtered slip velocity for both monodisperse and polydisperse systems.Subsequently,the effect of particle size and surrounding PSD is quantified by the ratio of particle size to Sauter mean diameter.Drag correction models for systems with monodisperse and continuous PSD are developed.A priori analysis demonstrates that the developed models exhibit reliable prediction accuracy.
基金Supported by the National Key R&D Program of China[2016YFB0600802]the National Natural Science Foundation of China[51390492,51325601]
文摘A three-dimensional(3D) fast fluidized bed with the riser of 3.0 m in height and 0.1 m in inner diameter was established to experimentally study the cluster behaviors of Geldart B particles. Five kinds of quartz sand particles(dp= 0.100, 0.139, 0.177, 0.250 and 0.375 mm and ρp= 2480 kg·m^(-3)) were respectively investigated, with the total mass of the bed material kept as 10 kg. The superficial gas velocity in the riser ranges from 2.486 to 5.594 m·s^(-1) and the solid mass flux alters from 30 to 70 kg·((m^(-2)·s))^(-1). Cluster characteristics and evolutionary processes in the different positions of the riser were captured by the cluster visualization systems and analyzed by the self-developed binary image processing. The results found four typical cluster structures in the riser,i.e., the macro stripe-shaped cluster, saddle-shaped cluster, U-shaped cluster and the micro cluster. The increasing superficial gas velocity and particle sizes result in the increasing average cluster size and the decreasing cluster time fraction, while the solid mass flux in the riser have the reverse influences on the cluster size and time fraction. Additionally, clusters in the upper region of the riser often have the larger size and time fraction than that in the lower region. All these effects of operating conditions on clusters become less obvious when particle size is less than 0.100 mm.
基金the National High Technology Research and Development Program of China(2007AA03Z524)
文摘The Reynolds stress transport model and the Eulerian two-fluid model provided by the FLUENT code were applied to evaluate the gas-particle two-phase flow in the ceramic filter vessel. The ceramic filter vessel contains six candle filters, which are arranged in the form of equilateral hexagon. The variation of the areal density of the filter cake during the filtration and the back-pulse process were analyzed. The coupling effect between filters, gas and solid, filtration and pulse cleaning process were investigated, respectively. The numerical results show a good approach to predict the particle distribution in the vessel and the particle deposition on the filter element. This study provides the base for the intensive study on the analysis of the gas-particle flow in the filter vessel.
文摘Sand/dust test is one of the key projects to examine the environmental adaptability of ordnance equipment.In order to decrease the abrasion of test facility caused by the sand/dust particles,the particles contained in the airflowneed to be reclaimed effectively.Amathematical model of Useparator is established.The flowfield and the trajectories of particles inside the separator are obtained using a numerical simulation method,and the separation efficiency and pressure drop of separator with different rows of separate components are also obtained at various flowvelocities.The simulation results indicate that the efficiency of U inertia separator is affected by the flowvelocity evidently,and a reasonably designed separator can meet the requirement of the separation efficiency in particular situation.The results can be use as reference for the design and test of sand/dust separate systems.