A comparative study is conducted to compare the theory and application effect of two accident causation models, the human factors analysis and classification system(HFACS) and the accident causation "2-4" model(2...A comparative study is conducted to compare the theory and application effect of two accident causation models, the human factors analysis and classification system(HFACS) and the accident causation "2-4" model(24 Model), as well as to provide a reference for safety researchers and accident investigators to select an appropriate accident analysis method. The two models are compared in terms of their theoretical foundations, cause classifications, accident analysis processes, application ranges, and accident prevention strategies. A coal and gas outburst accident is then analyzed using both models, and the application results are compared. This study shows that both the 24 Model and HFACS have strong theoretical foundations, and they can each be applied in various domains. In addition, the cause classification in HFACS is more practical, and its accident analysis process is more convenient. On the other hand, the 24 Model includes external factors, which makes the cause analysis more systematic and comprehensive. Moreover, the 24 Model puts forward more corresponding measures to prevent accidents.展开更多
In this study,civil gas energy accidents reported by the China Gas Network and related organizations from 2012 to 2021 were collected,and a comprehensive multidimensional correlation analysis was conducted considering...In this study,civil gas energy accidents reported by the China Gas Network and related organizations from 2012 to 2021 were collected,and a comprehensive multidimensional correlation analysis was conducted considering factors such as accident timing,geography,causes,and casualties.The results identified July and August,Mondays and Sundays,and the morning,mid-day,and evening cooking times as the high-incidence months,days,and times for gas accidents,respectively.Gas accidents were found to occur more frequently in eastern coastal areas,provincial capitals,and larger cities,while residential and construction sites were identified as high-risk areas for gas accidents.Explosions were the most prevalent type of gas accident,followed by leaks,fires,and poisoning.Third-party construction and valve issues were identified as the primary factors contributing to gas leakage,whereas cooking was identified as the most common ignition source.An analysis of the Pearson correlation coefficient indicated a significant correlation among the gas accident factors.Moreover,a time-series prediction model was developed to forecast gas accidents in China,with the results demonstrating fluctuating gas accidents.This study proposes targeted preventive measures in terms of publicity,education,equipment,and facilities to provide scientific support to government units to improve civil gas energy security measures.展开更多
基金support from the State Key Program of the National Natural Science Foundation of China (No. 51534008)
文摘A comparative study is conducted to compare the theory and application effect of two accident causation models, the human factors analysis and classification system(HFACS) and the accident causation "2-4" model(24 Model), as well as to provide a reference for safety researchers and accident investigators to select an appropriate accident analysis method. The two models are compared in terms of their theoretical foundations, cause classifications, accident analysis processes, application ranges, and accident prevention strategies. A coal and gas outburst accident is then analyzed using both models, and the application results are compared. This study shows that both the 24 Model and HFACS have strong theoretical foundations, and they can each be applied in various domains. In addition, the cause classification in HFACS is more practical, and its accident analysis process is more convenient. On the other hand, the 24 Model includes external factors, which makes the cause analysis more systematic and comprehensive. Moreover, the 24 Model puts forward more corresponding measures to prevent accidents.
基金The authors appreciate the financial support from the opening project of the State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology)(No.KFJJ23-19 M)the Beijing Nova Program Interdisciplinary Cooperation Project(No.Z2111000021211)the opening project of Tianjin Key Laboratory of Fire Safety Technology(No.2023TKLFST06).
文摘In this study,civil gas energy accidents reported by the China Gas Network and related organizations from 2012 to 2021 were collected,and a comprehensive multidimensional correlation analysis was conducted considering factors such as accident timing,geography,causes,and casualties.The results identified July and August,Mondays and Sundays,and the morning,mid-day,and evening cooking times as the high-incidence months,days,and times for gas accidents,respectively.Gas accidents were found to occur more frequently in eastern coastal areas,provincial capitals,and larger cities,while residential and construction sites were identified as high-risk areas for gas accidents.Explosions were the most prevalent type of gas accident,followed by leaks,fires,and poisoning.Third-party construction and valve issues were identified as the primary factors contributing to gas leakage,whereas cooking was identified as the most common ignition source.An analysis of the Pearson correlation coefficient indicated a significant correlation among the gas accident factors.Moreover,a time-series prediction model was developed to forecast gas accidents in China,with the results demonstrating fluctuating gas accidents.This study proposes targeted preventive measures in terms of publicity,education,equipment,and facilities to provide scientific support to government units to improve civil gas energy security measures.