Large-scale gas accumulation areas in large oil-gas basins in central and Western China have multiple special accumulation mechanisms and different accumulation effects.Based on the geological theory and method of nat...Large-scale gas accumulation areas in large oil-gas basins in central and Western China have multiple special accumulation mechanisms and different accumulation effects.Based on the geological theory and method of natural gas reservoir formation,this study examined the regional geological and structural background,formation burial evolution,basic characteristics of gas reservoirs,and fluid geology and geochemistry of typical petroliferous basins.The results show that the geological processes such as structural pumping,mudstone water absorption,water-soluble gas degasification and fluid sequestration caused by uplift and denudation since Himalayan stage all can form large-scale gas accumulation and different geological effects of gas accumulation.For example,the large-scale structural pumping effect and fluid sequestration effect are conducive to the occurrence of regional ultra-high pressure fluid and the formation of large-scale ultra-high pressure gas field;mudstone water absorption effect in the formation with low thickness ratio of sandstone to formation is conducive to the development of regional low-pressure and water free gas reservoir;the water-soluble gas degasification effect in large-scale thick sandstone can not only form large-scale natural gas accumulation;moreover,the degasification of water-soluble gas produced by the lateral migration of formation water will produce regional and regular isotopic fractionation effect of natural gas,that is,the farther the migration distance of water-soluble gas is,the heavier the carbon isotopic composition of methane formed by the accumulation.展开更多
The mechanism of hydrogen sulfide(H_2S) generation plays a key role in the exploration and development of marine high-sulfur natural gas, of which the major targets are the composition and isotope characteristics of s...The mechanism of hydrogen sulfide(H_2S) generation plays a key role in the exploration and development of marine high-sulfur natural gas, of which the major targets are the composition and isotope characteristics of sulfur-containing compounds.Hydrocarbon source rocks, reservoir rocks, natural gases and water-soluble gases from Sichuan Basin have been analyzed with an online method for the content of H_2S and isotopic composition of different sulfur-containing compounds. The results of comparative analysis show that the sulfur-containing compounds in the source rocks are mainly formed by bacterial sulfate reduction(BSR), and the sulfur compounds in natural gas, water and reservoir are mainly formed by thermal sulfate reduction(TSR). Moreover, it has been shown that the isotopically reversion for methane and ethane in high sulfur content gas is caused by TSR. The sulfur isotopic composition of H_2S in natural gas is inherited from the gypsum or brine of the same or adjacent layer,indicating that the generation and accumulation of H_2S have the characteristics of either a self-generated source or a near-source.展开更多
A series of marginal-sea basins and fault-depression basins were formed in eastern China under the background of subduction of the West Pacific plate.Different types of helium-rich natural gas reservoirs(He>1000 pp...A series of marginal-sea basins and fault-depression basins were formed in eastern China under the background of subduction of the West Pacific plate.Different types of helium-rich natural gas reservoirs(He>1000 ppm,1 ppm=1μmol mol^(-1))have been found in these basins:helium-rich CO_(2)gas reservoirs,helium-rich N_(2)gas reservoirs,and helium-rich hydrocarbon gas reservoirs.Based on the analysis of gas geochemical data,the source and accumulation mechanism of helium in these heliumrich natural gas reservoirs were discussed.Helium-rich natural gas has relatively high 3He/4He ratios(0.88-4.91 Ra,average 2.82 Ra).The ^(3)He/^(4)He ratio characteristics of mantle xenoliths and mantle-derived CO_(2)gas reservoirs indicate that the helium in these helium-rich natural gas reservoirs is mainly mantle-derived(>70%).The original mantle volatile is mainly CO_(2)with a low helium concentration(He<200 ppm),and the enrichment of mantle-derived helium in the gas reservoir is mainly related to the dissolution and mineralization of CO_(2).During this process,the CO_(2)/3He ratio decreases from 2×10^(9)to approximately 2×10^(6).As CO_(2)dissolves and mineralizes,the concentration of conservative gases(He and N_(2))increases in the remaining CO_(2)gas proportionally to the loss of CO_(2).Large amounts of carbonate minerals,such as dawsonite,which are relatively enriched in 13C,are found in CO_(2)reservoirs in eastern China.The relative enrichment of^(12)C in residual CO_(2)gas is important evidence of the dissolution and mineralization of CO_(2).The relative abundance of mantle-derived helium and N_(2)gas increases thousands of times during the dissolution and mineralization of CO_(2),which is the main accumulation mechanism of mantle-derived helium-rich CO_(2)gas reservoirs and helium-rich N_(2)gas reservoirs.Helium-rich gas from the mantle is mixed with alkane gas generated by organic matter in the sedimentary basin to form helium-rich hydrocarbon gas reservoirs.展开更多
基金Supported by the National Science and Technology Major Project(2016ZX05003-002)Scientific Research Project of Petro China Company Limited(2016E-0601)
文摘Large-scale gas accumulation areas in large oil-gas basins in central and Western China have multiple special accumulation mechanisms and different accumulation effects.Based on the geological theory and method of natural gas reservoir formation,this study examined the regional geological and structural background,formation burial evolution,basic characteristics of gas reservoirs,and fluid geology and geochemistry of typical petroliferous basins.The results show that the geological processes such as structural pumping,mudstone water absorption,water-soluble gas degasification and fluid sequestration caused by uplift and denudation since Himalayan stage all can form large-scale gas accumulation and different geological effects of gas accumulation.For example,the large-scale structural pumping effect and fluid sequestration effect are conducive to the occurrence of regional ultra-high pressure fluid and the formation of large-scale ultra-high pressure gas field;mudstone water absorption effect in the formation with low thickness ratio of sandstone to formation is conducive to the development of regional low-pressure and water free gas reservoir;the water-soluble gas degasification effect in large-scale thick sandstone can not only form large-scale natural gas accumulation;moreover,the degasification of water-soluble gas produced by the lateral migration of formation water will produce regional and regular isotopic fractionation effect of natural gas,that is,the farther the migration distance of water-soluble gas is,the heavier the carbon isotopic composition of methane formed by the accumulation.
文摘The mechanism of hydrogen sulfide(H_2S) generation plays a key role in the exploration and development of marine high-sulfur natural gas, of which the major targets are the composition and isotope characteristics of sulfur-containing compounds.Hydrocarbon source rocks, reservoir rocks, natural gases and water-soluble gases from Sichuan Basin have been analyzed with an online method for the content of H_2S and isotopic composition of different sulfur-containing compounds. The results of comparative analysis show that the sulfur-containing compounds in the source rocks are mainly formed by bacterial sulfate reduction(BSR), and the sulfur compounds in natural gas, water and reservoir are mainly formed by thermal sulfate reduction(TSR). Moreover, it has been shown that the isotopically reversion for methane and ethane in high sulfur content gas is caused by TSR. The sulfur isotopic composition of H_2S in natural gas is inherited from the gypsum or brine of the same or adjacent layer,indicating that the generation and accumulation of H_2S have the characteristics of either a self-generated source or a near-source.
基金supported by the National Key R&D Program of China(Grant No.2021YFA0719002)the National Natural Science Foundation of China(Grant Nos.42141021 and 42141022).
文摘A series of marginal-sea basins and fault-depression basins were formed in eastern China under the background of subduction of the West Pacific plate.Different types of helium-rich natural gas reservoirs(He>1000 ppm,1 ppm=1μmol mol^(-1))have been found in these basins:helium-rich CO_(2)gas reservoirs,helium-rich N_(2)gas reservoirs,and helium-rich hydrocarbon gas reservoirs.Based on the analysis of gas geochemical data,the source and accumulation mechanism of helium in these heliumrich natural gas reservoirs were discussed.Helium-rich natural gas has relatively high 3He/4He ratios(0.88-4.91 Ra,average 2.82 Ra).The ^(3)He/^(4)He ratio characteristics of mantle xenoliths and mantle-derived CO_(2)gas reservoirs indicate that the helium in these helium-rich natural gas reservoirs is mainly mantle-derived(>70%).The original mantle volatile is mainly CO_(2)with a low helium concentration(He<200 ppm),and the enrichment of mantle-derived helium in the gas reservoir is mainly related to the dissolution and mineralization of CO_(2).During this process,the CO_(2)/3He ratio decreases from 2×10^(9)to approximately 2×10^(6).As CO_(2)dissolves and mineralizes,the concentration of conservative gases(He and N_(2))increases in the remaining CO_(2)gas proportionally to the loss of CO_(2).Large amounts of carbonate minerals,such as dawsonite,which are relatively enriched in 13C,are found in CO_(2)reservoirs in eastern China.The relative enrichment of^(12)C in residual CO_(2)gas is important evidence of the dissolution and mineralization of CO_(2).The relative abundance of mantle-derived helium and N_(2)gas increases thousands of times during the dissolution and mineralization of CO_(2),which is the main accumulation mechanism of mantle-derived helium-rich CO_(2)gas reservoirs and helium-rich N_(2)gas reservoirs.Helium-rich gas from the mantle is mixed with alkane gas generated by organic matter in the sedimentary basin to form helium-rich hydrocarbon gas reservoirs.