期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Molecular Simulations of FCC Dry Gas Components Adsorption in Zeolite Y 被引量:1
1
作者 Ding Xue Liu Yibin +2 位作者 Yang Chaohe Shan Honghong Chen Fangwen 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2016年第1期100-107,共8页
Adsorption of FCC dry gas components, hydrogen(H_2), nitrogen(N_2), methane(CH_4), ethane(C_2H_6) and ethylene(C_2H_4) in zeolite Y was studied by performing the Grant Canonical Monte Carlo(GCMC) simulations at 298K a... Adsorption of FCC dry gas components, hydrogen(H_2), nitrogen(N_2), methane(CH_4), ethane(C_2H_6) and ethylene(C_2H_4) in zeolite Y was studied by performing the Grant Canonical Monte Carlo(GCMC) simulations at 298K and 823K and under a pressure range up to 10 MPa. Simulation results were analyzed using the Langmuir model, which presented fitting of dry gas components adsorption to be suggested as the monolayer adsorption. C_2H_4 presented most single adsorption amount, which reached 7.63 mol/kg at 298K under a pressure of 200kPa. Thermodynamic parameters of the Gibbs free energy change, enthalpy change and entropy change were analyzed based on adsorption equilibrium constant obtained from the GCMC simulations. The results suggested that it was more favorable for C_2H_4 to be adsorbed in zeolite Y. Adsorption molecules were in ordered arrangement in the zeolite, and C_2H_4 exhibited a more orderly arrangement than other components. Additionally, a competition in the adsorption of a mixture of dry gas components was found, and supercages were the priority adsorption space. The competition was favorable to CH_4 and C_2H_6, and the competitive power was affected by temperature. 展开更多
关键词 adsorption dry gas zeolite molecular simulation Monte Carlo method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部